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Abstract. We study the spherically symmetric collapse of a cloud of dust in VCDM, a class
of gravitational theories with two local physical degrees of freedom. We find that the collapse
corresponds to a particular foliation of the Oppenheimer-Snyder solution in general relativity
(GR) which is endowed with a constant trace for the extrinsic curvature relative to the time t
constant foliation. For this solution, we find that the final state of the collapse leads to a
static configuration with the lapse function vanishing at a radius inside the apparent horizon.
Such a point is reached in an infinite time-t interval, t being the cosmological time, i.e. the
time of an observer located far away from the collapsing cloud. The presence of this vanishing
lapse endpoint implies the necessity of a UV completion to describe the physics inside the
resulting black hole. On the other hand, since the corresponding cosmic time t is infinite,
VCDM can safely describe the whole history of the universe at large scales without knowledge
of the unknown UV completion, despite the presence of the so-called shadowy mode.
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1 Introduction

It is a time in cosmology when we are awaiting for some answers to fundamental questions.
What is gravity? The answer to this question might be still too far in time or even too difficult
to be understood. The answer might in fact connect the quantum realm to the large scales
of the universe. After all, even before aiming to find an answer to this question, currently
we need to understand why cosmological data today seem to give a puzzling picture of the
theory which is needed to model them.

In fact, on assuming all experiments being free from significant unknown systematics, it
seems impossible to fit all the data at hand by means of ΛCDM. Therefore we are bound to
explore alternative theories which may be giving instead a better fit to the data, fixing current
cosmological tensions. In order to address this point, namely to have a theory which would
allow general (but non vanishing) H(z) and even a general (but positive) Geff(z)/GN , the
theories of VCDM and VCCDM were introduced [1, 2]. Here, by Geff we mean the effective
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gravitational constant appearing in the modified Poisson equation which relates the over
density perturbation of the matter, δm, to the Bardeen gravitational potential Ψ. On top
of these interesting phenomenological properties, both VCDM and VCCDM only possess
two degrees of freedom in the gravity sector, i.e. the two polarization modes of the tensorial
gravitational waves. These two theories coincide with each other whenever cold dark matter
components are negligible or not considered.

In the high k limit the VCDM theory acts like GR, i.e., Geff/GN → 1 (refer to [1]). Due
to this fact VCDM theory cannot change Geff(z)/GN from unity, while VCCDM can change
Gcc/GN , where Gcc is the self gravitational coupling between cold dark matter particles.
Therefore, VCDM and VCCDM will share the same solutions in the vacuum case (e.g. same
BH solutions [3]) as well as solutions which only deal with baryonic matter (e.g. same star
solutions [4]).

In both theories, we may find an appropriate cosmological model, which explains the
observational data [2, 5]. In addition to it, when we focus on strongly gravitating compact
objects, we have to reanalyze their viability. As we have shown in the previous papers, VCDM
and VCCDM admit the Schwarzschild solution [3, 6] as well as a solution of TOV equation
that is the same as the one in GR [4]. In VCDM/VCCDM, however, solutions with the
same spacetime geometry but with different time slicings are physically different since the
theory has a preferred time slicing. In order for a solution to be trustable, not only the
spacetime geometry but also the time slicing should be regular. For example, the standard
Schwarzschild-type foliation of a spherically-symmetric, static metric is ill-defined at the
horizon and thus the corresponding solution in VCDM/VCCDM is physically singular while
in GR it is simply a coordinate singularity. Then the question is how a black hole is formed
in VCDM after gravitational collapse. In the formation of a black hole, a singularity should
not appear on or outside the horizon. In this sense, any spherically-symmetric, static solution
with the standard Schwarzschild-type foliation is no longer to be a valid black hole solution
in VCDM after gravitational collapse. Hence, we ask, what kind of black hole solution in
VCDM is found after gravitational collapse?

In this paper, in order to answer this question, we want to investigate the spherically
symmetric collapsing solutions (or, at least, a subset of them) for a cloud of dust in VCDM
(or for a cloud of baryonic dust in VCCDM). In a recent paper of ours [3], we have found that
there is a subset of the solutions of VCDM theory which are also solutions of GR provided that
the trace of the extrinsic curvature K (relative to the t-constant hypersurface) is a constant
and that the VCDM auxiliary field φ is a constant as well. Motivated by the aforementioned
result, we study the Oppenheimer-Snyder (OS) solution of GR rewritten in a coordinate patch
which allows K = K∞, and study the matching conditions at the surface of the star for the
metric field and all the auxiliary fields of VCDM.

VCDM and VCCDM are classified as Type-IIa Minimally Modified Gravity (MMG)
theories [3, 7]. There are also other minimally modified gravity theories, each of which
propagates only two local physical degrees of freedom [2, 8–20]. They break general four
dimensional diffeomorphism invariance, because of the presence of a shadowy mode which
defines a preferred foliation. For this preferred foliation the shadowy mode satisfies an elliptic
equation of motion. Therefore different foliations mean physically different solutions in VCDM.
For example in cosmology the trace of the extrinsic curvature K is a function of time and
thus the theory is different from ΛCDM and has interesting phenomenology [5]. On the other
hand, in the case of black holes, if we set K and φ to be constants then VCDM admits GR
solutions. As a consequence, not all the slicings of the GR-OS solution will be appropriate
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(i.e. allowed by the equations of motion) slicings in VCDM. In particular the standard slicing
of the OS solution provides an interior solution which is homogeneous and isotropic. In this
case one finds the trace of the extrinsic curvature is merely proportional to the contraction
rate H(t) for the interior solution. But this means that at least this foliation cannot provide
a solution of GR and that of VCDM at the same time. So one then wonders how a collapse
in VCDM looks like.

In this paper we indeed show that a different foliation of the OS solution can describe a
solution for both VCDM and GR. On following the results of [3], this VCDM-GR compatible
foliation is defined as to make the trace of the extrinsic curvature for the solution a constant.
This constant, after imposing the Israel junction conditions, needs to correspond to the trace
of the extrinsic curvature for the outer metric, which then matches a constant de Sitter
solution at infinity.

This leads to an interesting collapse solution in VCDM which then predicts the final
state of the solution as reaching a radius (located inside the apparent horizon) where the
lapse function vanishes (there and at any place up to the origin). This endpoint is reached in
an infinite t-time interval, t being the time of a cosmological observer, i.e. an observer located
far away from the collapsing cloud. The solutions, in this limit, reduces to the static solutions
found in [21], with the difference that the free parameters of the solutions are fixed by the
collapse dynamics.

This paper is organized as following. At first, we introduce the VCDM covariant action
in section 2. Then, in section 3 we rewrite the GR (and VCDM) solutions in vacuum,
corresponding to the outer metric patch, having the property that K = K∞ = constant. We
find the properties of the collapse for the outer solutions in section 4. Instead, we study the
interior solution and its collapse in section 5. We set the Israel junction conditions for VCDM
in section 6. On fixing the appropriate boundary conditions at infinity, we finally study the
collapse and its final point, which then leads asymptotically to static VCDM/GR solutions in
section 7. We finally give our conclusions in section 8.

2 The VCDM action

Here we show covariant action for the VCDM theory, which was first introduced in [3]:

S = M2
P

∫
d4x
√
−g

{1
2 R

(4) − V (φ)− 3
4 λ

2 − λ (∇σnσ + φ)

+ λ2
A

[γτρ∇τ∇ρφ+ nρ(∇ρφ)∇σnσ] + λT (1 + gµνnµnν)
}
, (2.1)

nµ ≡ −A∇µT , (2.2)
γµν = gµν + nµnν , (2.3)

where φ, A and T are 4D scalars. We have Lagrange multipliers λ, λ2 and λT , which will
determine the connections between the 4D scalars and the geometrical objects. Choosing the
unitary gauge for the time coordinate, this action reduces to the equivalent action which was
introduced in [1].
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We can integrate out the field A by varying λT , and the action can then be rewritten as

S = M2
P

∫
d4x
√
−g

{1
2 R

(4) − V (φ)− 3
4 λ

2 − λ (∇σnσ + φ)

+ (−gµν∇µT ∇νT )1/2 λ2 [γτρ∇τ∇ρφ+ nρ(∇ρφ)∇σnσ]
}
, (2.4)

nµ = −(−gµν∇µT ∇νT )−1/2∇µT , (2.5)
γµν = gµν + nµnν , (2.6)

so that ∇µT is timelike by construction. From this action we can find the covariant equations
of motion, which were derived in appendix A of [3] (with a slightly different notation).

In what follows, using this VCDM model, we look for a spherically symmetric time-
dependent solution which describes the gravitational dust collapse and the formation of a
black hole. Note that the presented solution can also be applied to the VCCDM model.

3 The outer metric

In this section we write the Schwarzschild-de Sitter metric, i.e. the vacuum spherically
symmetric GR solutions in the presence of a cosmological constant. It is given in such a way
that the extrinsic curvature of the t-constant hypersurface has a constant trace. Then, as
found in [3], automatically this solution will be also a solution of VCDM, provided that also
the auxiliary field φ is constant.

3.1 Schwarzschild reloaded
Let us then assume an outer metric with the following ansatz

ds2 = −α(t, r)2 [1− β(t, r)2/F (t, r)] Ṫ 2 dt2 + 2 αβ
F
Ṫ dt dr + dr2

F
+ r2dΩ2 , (3.1)

dΩ2 = dz2

1− z2 + (1− z2) dθ2
2 , (3.2)

where we have defined z = cos θ1, and have introduced a function Ṫ > 0, explicitly showing
time reparametrization invariance, which is a symmetry of VCDM. Then for this spherically
symmetric ansatz we will consider the t-extrinsic curvature, that is the extrinsic curvature of
the hypersurface t = const. with normal vector nαdxα = −αṪdt, with nαnβg

αβ = −1, as

−K = 2β
r

+ βα,r
α

+ β,r −
βF,r
2F + F,t

2FαṪ
. (3.3)

We want to have a foliation of the spacetime, in which the trace of the extrinsic curvature
takes the value

K = K∞ = constant , (3.4)
so that this solution belongs to the class of VCDM solutions which are also solutions of GR
(provided that φ is also a constant).

We can formally solve the PDE in eq. (3.4), in terms of α, by finding

α =
{
W (t)− 1

Ṫ

∫ r F,t
2Fβ exp

[
−
∫ r2

(
−K∞

β
+ F,r

2F −
β,r
β
− 2
r

)
dr1

]
dr2

}
× exp

[∫ r (
−K∞

β
+ F,r

2F −
β,r
β
− 2
r

)
dr3

]
. (3.5)
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Given the metric in eq. (3.1), we can find its own Einstein tensor, Gµν . In fact, its (t, r)
component can be found to be

Gtr = −(K∞r + rβ,r + 2β) [. . . ] , (3.6)

where the dots represent, in general, a non-zero quantity (which, if vanishing, would make α
not well defined). Setting this Einstein tensor component, Gtr, to vanish leads to

β = −1
3 K∞r + κ(t)

r2 . (3.7)

With the above solution for β we find the following relation

exp
[∫ r (

−K∞
β

+ F,r
2F −

β,r
β
− 2
r

)
dr1

]
= exp

[∫ r (F,r
2F

)
dr1

]
= W1(t)

√
F , (3.8)

and then eq. (3.5) can be written as

α =
(
W (t)W1(t)− W1(t)

ṪW2(t)

∫ r F,t

2Fβ
√
F

dr1

)
√
F

=
(

1− 1
Ṫ

∫ r F,t
2βF 3/2 dr1

) √
F , (3.9)

having fixed the integration functions, as to make α→ 1 for F,t → 0 when F → 1.
In cosmology in GR, on de Sitter with the standard flat chart coordinates, we have

K = K∞ = 3H∞. In this case the first Friedmann equation leads to 3M2
PH

2
∞ = M2

PΛeff , or
Λeff = 3H2

∞ = 1
3 K

2
∞. Then this fixes K∞ in terms of the cosmological constant, or in terms

of H∞, for this foliation. Therefore let us now fix the Schwarzschild background to satisfy the
Einstein equation as

Gµν = −Λeffδ
µ
ν = −1

3 K
2
∞ δ

µ
ν . (3.10)

If we solve the time-time component, that is Gtt = −1
3 K

2
∞, then we find

F = 1 + Z(t)
r

+ κ(t)2

r4 . (3.11)

From the r-r component, that is Grr = −1
3 K

2
∞, we need to set the following constraint

(−2K∞κ̇− 3Ż) [. . . ] = 0 , (3.12)

where, once more, the dots represent, in general, a non-zero quantity. Then we can solve

Z(t) = −rH −
2
3 K∞ κ(t) , (3.13)

where rH is an integration constant. Then finally

F = 1− rH
r
− 2

3
K∞κ(t)

r
+ κ(t)2

r4 , (3.14)

β = −1
3 K∞r + κ(t)

r2 , (3.15)
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so that
F,t = 2κ̇

r2 β , (3.16)

and
α =

(
1− κ̇

Ṫ

∫ r

r0

1
r2

1F
3/2 dr1

)
√
F , (3.17)

where r0 is just an integration constant. The other equations of motion are also satisfied, so
that the solution is determined (up to time reparametrization Ṫ ) by the free function κ(t),
and the constants K∞, and r0. In particular, we will set r0 →∞ as to have limr→∞ α = 1.

In summary, this is a solution which is nothing but the standard Schwarzschild de
Sitter of GR in a constant mean curvature slicing, having a constant trace for the t-extrinsic
curvature K, making this solution also a solution of VCDM [3] (provided also φ is a constant).
Since this solution is also a solution of GR, it is not a surprise that this solution were already
found in the literature in the context of maximal slicing or constant mean curvature slicing
(see e.g. [22–26].) Note that this solution is a subset of the general time-dependent solutions
found in VCDM. Indeed, there exist other time-dependent VCDM solutions which are not
found in GR. However we study just this GR-type solution in this paper since we would like
to show the existence of VCDM solution which describes gravitational collapse and formation
of a black hole.

Although this solution holds true for any value of K∞, we need to set K∞ = 3H∞ =
3
2 V,φ∞ −φ∞, the last relation holding true for VCDM, as to have a de Sitter limit at infinity.1
Then its contribution, corresponding to an effective cosmological constant contribution, on
astrophysical scales/configurations, can be safely neglected, so that when we deal with
numerics we will set K∞ to vanish.

3.2 Presence of the apparent horizons
We have just seen that a constant trace of the extrinsic curvature K, relative to the t-slicing
hypersurface, corresponds to having

F (t, r) = 1− rH
r
− 2

3
K∞κ(t)

r
+ κ(t)2

r4 . (3.18)

In the above expression we have a free time-dependent function κ(t). Let us see how the
freedom of κ(t) affects (or not) the presence of the apparent horizon for the metric in eq. (3.1).
For this, once more we consider a completely general spherically symmetric ansatz rewritten
for our convenience as

ds2 = −(N2 −B2) dt2 + 2BFdt dr + F2 dr2 + r2dΩ2 . (3.19)

In the following we consider N > 0, as well as F and B (a negative B would be regarded as a
flip in t→ −t), and all of them are functions of t and r. Then let us consider two lightlike
vectors

lµ∂µ = ∂t + N −B
F

∂r , (3.20)

wµ∂µ = ∂t −
N +B

F
∂r , (3.21)

1Outside the de Sitter limit, it is not trivial to find a solution which can be extended up to infinity. This
because in a universe with matter, before reaching r-infinity, matter sources (baryons, dark matter) will give
non negligible contributions (sourcing furthermore a time dependence for the field φ) which lay outside the
validity of these Λeff-vacuum solutions.
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which satisfy
lµlµ = 0 = wµwµ , lµwµ = −2N2 < 0. (3.22)

Using the above lightlike vectors, we can define an orthogonal projector

hµνlw = gµν + lµwν + lνwµ

(−lσwσ) , (3.23)

so that hµνlw lν = 0 = hµνlwwν . Then we can build the following two scalars

θl = hµνlw∇ν lµ = 2
rF

(N −B) , θw = hµνlw∇νwµ = − 2
rF

(N +B) . (3.24)

Let us now consider the marginally outer trapped surface (MOTS), i.e. the apparent horizon,
that is the surface r = rAH(t) for which

θl(t, r = rAH(t)) = 0 , θw(t, r = rAH(t)) < 0 . (3.25)

In this case we have a non trivial solution of the form

N(t, rAH(t)) = B(t, rAH(t)) , for which grr(t, r = rAH(t)) = N2 −B2

N2F 2 = 0 . (3.26)

So we have a MOTS, an apparent horizon at r = rAH(t). Let us see what happens for the
metric under study. On identifying the metric in eq. (3.1) with the one in eq. (3.19), we have

F2 = 1
F
, or F = F−1/2 , (3.27)

BF = αβ

F
Ṫ , or B = αβṪ√

F
, (3.28)

N2 −B2 = α2 Ṫ 2 [1− β2/F ] , or N = α Ṫ . (3.29)

In this case we have the MOTS for a nonzero α and Ṫ , if

αṪ = αβṪ√
F
, or F = β2 . (3.30)

The above equation on using eq. (3.14) and eq. (3.15) leads to

1− rH
rAH

− 2
3
K∞κ(t)
rAH

+ κ(t)2

r4
AH

= 1
9 K

2
∞r

2
AH + κ(t)2

r4
AH

− 2
3
K∞κ(t)
rAH

(3.31)

or
1− rH

rAH
− 1

9 K
2
∞r

2
AH = 0 . (3.32)

This shows that there are only two horizons, the event horizon and the cosmological horizon,
and also that ṙAH = 0, independently of the function κ(t). So the free function κ(t) does not
affect the position/behavior of the apparent horizon and we are still able to choose it the way
we think it is more useful, at least locally. However, as we shall see later on, the value of κ(t)
will be determined by the dynamics of the collapse.
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3.3 VCDM coordinate patch

We know that an exact GR configuration/solution is also shared by the VCDM theory,
provided that the VCDM auxiliary field φ has a constant profile and that the trace of the
extrinsic curvature tensor (for the t-foliation in VCDM) is also a constant. Then the previous
GR solution can be embedded also in VCDM, since K = K∞. The vacuum spacetime has an
apparent horizon at the zeros of the function 1− rH

r −
1
9 K

2
∞r

2.
We want to show here that it is possible that, for some value of κ(t) at a given time, the

lapse function N = αṪ , for Ṫ > 0, never vanishes for any r > 0. In particular, for a constant
κ(t) = κ0, we have that α =

√
F , so that also F never vanishes for this coordinate patch. In

any case, the metric would still be possessing an apparent horizon so that the singularity,
which may appear at the center r = 0, is never naked (for rH > 0 and K2

∞r
2
H � 1). For a

non-vanishing F , this coordinate choice would be able to describe all the r > 0 region.
Hence, for simplicity, in the following we only consider a constant κ and look for the

domain of κ’s which makes F (or α) never vanish. The study of this coordinate patch will
help us understanding the final state of the collapse in VCDM theory. In particular, let us
try to set the equation r4F = 0, as to have double real roots and two complex ones. Let us
try to find the “extremal” value of κ for which this happens.

Then in this case, on assuming r > 0, let us find constants ξ1,2,3 to allow for this
possibility to hold true. Then we have

r4F = r4 −
(
rH + 2

3K∞κ
)
r3 + κ2 = 1

ξ1
(r − r1)2 [ξ1r

2 + ξ2r + ξ3] , (3.33)

with ξ2
2 − 4ξ1ξ3 < 0 and ξ1 6= 0. The absence of terms linear in r in the r.h.s. of eq. (3.33)

imposes that
ξ3 = ξ2r1

2 . (3.34)

Then the absence of quadratic terms in r also imposes that

ξ2 = 2ξ1r1
3 , and ξ3 = ξ1r

2
1

3 . (3.35)

At this point we have that

ξ2
2 − 4ξ1ξ3 =

(2ξ1r1
3

)2
− 4ξ2

1r
2
1

3 = −2
(2ξ1r1

3

)2
< 0 , (3.36)

and
r4 −

(
rH + 2

3K∞κ
)
r3 + κ2 = r4 − 4r1r

3

3 + r4
1
3 . (3.37)

For the last equation to make sense as an identity we need

r1 = 1
4 (3rH + 2κK∞) , (3.38)

κ2 = r4
1
3 = 1

3

[1
4 (3rH + 2κK∞)

]4
. (3.39)

From the first equation we can derive the value of r1, and we can see that for vanishing K∞
we indeed find r1 = 3rH/4, as expected (see e.g. [6]). The second equation does not trivially
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hold, unless we find the values of κ for which the equation is satisfied. Therefore we find for
positive κ’s that

κ = κ+ ≡
9r2
H

−6K∞rH + 4
√

3
(√
−2
√

3K∞rH + 4 + 2
) = 3

16
√

3r2
H + 9

64K∞r
3
H +O[K2

∞r
4
H ] ,

(3.40)
and for negative κ’s that

κ = κ− = − 9r2
H

4
√

3
(√

4 + 2
√

3K∞rH + 2
)

+ 6K∞rH
= − 3

16
√

3r2
H + 9

64K∞r
3
H +O[K2

∞r
4
H ] .

(3.41)
Hence, we find the following two cases (see the appendix for explicit calculations).

1. For κ− ≤ κ < 0 or 0 < κ ≤ κ+, the coordinate patch can get inside the Schwarzschild
radius but has a lower bound r1, that is

0 < κ ≤ κ+ : r1,+ ≤ r1 < rH , (3.42)
κ− ≤ κ < 0 : r1,− ≤ r1 < rH , (3.43)

where

r1,+≡
1
4 (3rH+2K∞κ+) =−

√
3
√
−2
√

3K∞rH+4
2K∞

+
√

3
K∞
≈ 3rH

4 + 3
√

3
32 K∞r

2
H , (3.44)

r1,−≡
1
4 (3rH+2K∞κ−) =−

√
3

K∞
+
√

3
√

4+2
√

3K∞rH
2K∞

≈ 3rH
4 −

3
√

3
32 K∞r

2
H , (3.45)

and the numbers r1,± have been expanded in terms of the small parameter K∞rH . For
κ = 0, the solution cannot get inside the Schwarzschild radius and the lapse vanishes at
r = rH . At r = r1, both the functions F and α =

√
F vanish, leading to a vanishing

lapse function, in general.

2. For κ < κ− or κ > κ+ the solutions of r4F = 0 are all complex and F never vanishes,
so as α.
In any case, we stress once more that, although at this level, there is the freedom of the

choice of κ, we will see that at the end of the collapse, κ will be set to belong to the first
possibility, namely κ ≤ κ+ (for positive κ’s), as to exclude the second case.

4 Collapsing outside vacuum solution

Based on the previous results, in the following we will consider the outer vacuum solution
endowed with a time-dependent κ. So we will consider then as the outside solution (i.e. the
solution valid outside the collapsing star) the one given by

F = 1− rH
r
− 2

3
K∞κ(t)

r
+ κ(t)2

r4 , (4.1)

β = −1
3 K∞r + κ(t)

r2 , (4.2)

α =
(

1− κ̇

Ṫ

∫ r

r0

1
r2

1F (t, r1)3/2 dr1

)
√
F , (4.3)
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and for the sake of clarity we rewrite the metric as

ds2 = −α
2

F
[F − β2] Ṫ 2 dt2 + 2 αβṪ

F
dt dr + dr2

F
+ r2dΩ2 ,

dΩ2 = dz2

1− z2 + (1− z2) dθ2
2 ,

where, once more, the function Ṫ (t) is due to time-reparametrization invariance. In the
following we will also define the functions g1,2 as

α(t, r) = g2(t, r)− κ̇

Ṫ
g1(t, r) , (4.4)

g2(t, r) =
√
F , (4.5)

g1(t, r) =
√
F

∫ r

r0

dr1

r2
1

[
1− rH/r − 2

3
K∞κ(t)

r + κ(t)2/r4
]3/2 . (4.6)

This implicit form is convenient in order not to hide any contribution coming from Ṫ .
We will define the hypersurface for the external metric coordinates on which we will

match the two metrics by
Φ(xµ) = r −R(t) = 0 , (4.7)

where R(t) is still a function of time to be determined, which corresponds to the radius of the
collapsing cloud/star as seen from the outside metric point of view. Then the normal nµ to
this surface is proportional to the gradient of Φ, namely

nµdx
µ ∝ dr − Ṙ dt , (4.8)

with the condition that nαnα = 1 for the normal vector to the hypersurface. Then we find

nµdx
µ = 1√

∆n
(g2Ṫ−g1κ̇)(dr−Ṙdt) , (4.9)

∆n≡ g2
2Ṫ

2
(
F−β2

)
−2g2Ṫ [κ̇(F−β2)g1+βṘ]+g2

1κ̇
2
(
F−β2

)
+2Ṙg1βκ̇−Ṙ2 . (4.10)

Now we can define the following projection tensors

hαβ = gαβ − nαnβ , (4.11)
hα

β = hαµg
µβ , (4.12)

so that
hα

βnβ = 0 , hαβn
β = 0. (4.13)

We can define then the extrinsic curvature for this hypersurface as

Kµν = hµ
ρhν

σnρ;σ . (4.14)

This extrinsic curvature tensor should not be confused with the extrinsic curvature tensor
Kµν which was defined for the t-constant hypersurfaces. We further define three vectors as

eµa = ∂xµ

∂ya
, (4.15)
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where ya are coordinates on the hypersurface, here chosen to be (t, z, θ2). Then we have

eµt ∂µ = ∂t + Ṙ ∂r , eµz ∂µ = ∂z , eµθ2 ∂µ = ∂θ2 , (4.16)

satisfying nµeµa = 0, out of which we can find twelve scalars as

hab = hba = hµνe
µ
ae
ν
b|r=R(t) , Kab = Kba = Kµνeµaeνb|r=R(t) . (4.17)

We impose the standard Israel junction conditions at the surface of the star, so that these
expressions need to be continuous on the hypersurface joining the two different GR solutions.
Out of these scalars, given the spherical symmetric ansatz, only the diagonal components do
not vanish.

5 Collapsing inside dust solution

Let us now study the collapse from the point of view of the inside metric. We then write the
inside metric as a spatially closed homogeneous and isotropic metric, however, by choosing a
quite general time slicing, as follows

ds2 = −a
(
f(t, χ)

)2 [f,tdt+ f,χdχ]2 + a
(
f(t, χ)

)2 [ dχ2

1− χ2 + χ2dΩ2
]
, (5.1)

where we have started with the conformal time η with N(η) = a(η) and made the general
coordinate transformation η = f(t, χ), that respects the spherical symmetry, to relate η to the
VCDM time t. The coordinate transformation, i.e. the slicing is chosen as to have K = K∞
for the trace of the extrinsic curvature of the t-const hypersurface. In fact we want the same
VCDM slicing to hold both outside and inside the hypersurface to accommodate the GR
solution in VCDM, and for this purpose we need to require that K for the t = constant
hypersurface be constant everywhere, so as the VCDM field φ. In GR, although this choice is
allowed, the standard coordinates of the Oppenheimer-Snyder solution would be the simplest to
implement. In VCDM, however, different slicings correspond to physically different solutions,
so that we are looking for that particular slicing which satisfies K = K∞. For this metric, we
have that the normal to the t = constant surface can be written as

nαdx
α = − af,t√

1− f2
,χ(1− χ2)

dt , (5.2)

which is well defined only if 1− f2
,χ(1− χ2) > 0. Out of this covector we can find its associate

induced metric, hαβ = gαβ + nαnβ , its extrinsic curvature tensor, Kαβ = hα
ρhβ

σ∇ρnσ as well
as its trace as K = hαβKαβ. Finally we can write

−K = (χ2 − 1)f,χχ
a [1 + f2

,χ (χ2 − 1)]
3
2
− 3a,f√

1 + f2
,χ (χ2 − 1) a2

+
2
(
(χ2 − 1)2f2

,χ + 3χ2

2 − 1
)
f,χ

[1 + f2
,χ (χ2 − 1)]

3
2χa

= −K∞ .

(5.3)
We will solve this differential equation numerically later on, provided we also give the function
a = a(f) to be determined in the following. As for now, we will only assume there is such a
solution. Once more, we need this equation to hold as we want to embed this GR solution in
VCDM, and in this case, we need to require that K = K∞.
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We can now proceed by realizing that the hypersurface where the junction conditions
take place can be described from the inside-metric point of view as happening for

Φ(xµ) = χ− χs = 0 , (5.4)

where a constant χs denotes the star surface, so that the unit vector normal to this hypersurface
can be written as

nαdx
α = a√

1− χ2 dχ . (5.5)

Out of this covector one can define the projector hαβ = δα
β−nαnβ , and the extrinsic curvature

Kµν . Also for the inside metric we can define three vectors

eµa = ∂xµ

∂ya
, where ya ∈ {t, z, θ2} , (5.6)

or
eµt ∂µ = ∂t , eµz∂µ = ∂z , eµθ2∂µ = ∂θ2 . (5.7)

By doing this, out of the twelve scalars

hab = hba = hµνe
µ
ae
ν
b|χ=χs , Kab = Kba = Kµνeµaeνb|χ=χs , (5.8)

we can prove that for the inside metric the only nonzero terms are the following ones

htt = −a
(
f(t, χs)

)2f,t(t, χs)2 , (5.9)

hzz =
a
(
f(t, χs)

)2χ2
s

1− z2 , (5.10)

hθ2θ2 = a
(
f(t, χs)

)2χ2
s (1− z2) , (5.11)

Kzz =
a
(
f(t, χs)

)
χs
√

1− χ2
s

1− z2 , (5.12)

Kθ2θ2 = a
(
f(t, χs)

)
χs

√
1− χ2

s(1− z2) . (5.13)

It should be noticed that the component Ktt vanishes for the inside metric.

6 Matching conditions

6.1 Israel junction conditions

We now impose the standard Israel junction conditions at the surface of the star. This
standard treatment in GR is justified also in VCDM since (i) we have set the trace of the
extrinsic curvature of the constant-t hypersurface to the same constant value K∞ everywhere
in both sides of the surface of the star; and (ii) we shall in the next subsection require the
continuity of the unit normal to the constant-t hypersurface across the surface of the star
as (6.23)–(6.24) below.

For the outside metric let us first consider the following two elements

h+
zz = R(t)2

1− z2 , (6.1)

h+
θ2θ2

= R(t)2 (1− z2) . (6.2)
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If we match them with the inside metric we find

R(t) = χs a
(
f(t, χs)

)
. (6.3)

Let us now consider the expression

K+
zz

∣∣∣
r=R(t)

= K−zz
∣∣
χ=χs,a=R/χs . (6.4)

Then one finds a quadratic equation for Ṫ as

Ṫ 2 +A(t) Ṫ + B(t) = 0 . (6.5)

By taking its time derivative, we can also find an equation for T̈ . Eq. (6.5) can be solved
algebraically for Ṫ as

Ṫ = −
√

1− χ2
s

√
1− χ2

s + β̄2 − F̄
√
F̄ − (1− χ2

s + β̄2 − F̄ )β̄
(F̄ − β̄2)(1− χ2

s + β̄2 − F̄ ) ḡ2
Ṙ+ ḡ1κ̇

ḡ2
, (6.6)

where a bar indicates that the function is evaluated at r = R(t), e.g. F̄ = F
(
t, r = R(t)

)
. We

have picked up the solution which for vanishing β, leads to Ṫ > 0 for Ṙ < 0. Here and in
the following we always assume that κ(t) > 0, so that β̄ > 0. On considering the possible
value for R(t) = Rh for which

√
F̄ = β̄ > 0, then at this instant of time the solution would be

crossing the horizon. However, the quantity Ṫ /Ṙ would still remain finite as

Ṫ − ḡ1κ̇

ḡ2
= − (1− χ2

s + β̄2)

(1− χ2
s)
[√

F̄

√
1 + β̄2−F̄

1−χ2
s

+
(
1 + β̄2−F̄

1−χ2
s

)
β̄

] Ṙ
ḡ2
. (6.7)

On using the obtained relations for Ṫ and T̈ , we also find that

K+
tt = 0 , (6.8)

satisfying automatically the matching conditions.
At this level all the components of the extrinsic curvature tensor are equal for both the

inside/outside metrics. However, we still need to match

Ett ≡ h+
tt − h−tt

∣∣∣
a=R/χs

= 0 . (6.9)

Since R(t) = χs a[f(t, χs)], we can replace

Ṙ = dR

dt
= dR

da

da

df
f,t = χs a,f f,t . (6.10)

This relation, together with the one obtained before for Ṫ gives the following constraint

Ett =
af2

,t

(
a4K2

∞χ
3
s − 9a2χ3

s − 9a2
,fχ

3
s + 9arH

)
a3K2

∞χ
3
s − 9aχ3

s + 9rH
= 0 . (6.11)

This constraint can be solved as

3a2
,f

a4 + 3
a2 = K2

∞
3 + 3rH

a3χ3
s

. (6.12)
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This equation is the equation which determines a as a function of f , and it can be recognized
as being the Friedmann equation of a closed universe with a cosmological constant and a dust
component which can be written as

ρdust
M2

P
= 3rH
a3χ3

s

= 3(2GM)
R3 , or M = 4

3πρdustR
3 . (6.13)

If we define amax as the maximum value of a, in this case a,f (a = amax) = 0, which also
implies that Ṙ = 0. In this case, on the maximum, we also find

3rH
R3

max
= 3rH
a3

maxχ
3
s

= 3
a2

max
− K2

∞
3 = 3χ2

s

R2
max
− K2

∞
3 , (6.14)

which sets the value of χs as

χ2
s = rH

Rmax
+ K2

∞R
2
max

9 . (6.15)

6.2 Absence of cusp of T -constant surface

As we can see from the VCDM action (2.6) introduced in section 2, in VCDM we need to
add an extra junction condition. In fact, in VCDM there is a field T which is required to be
timelike everywhere (and can be always fixed to be T = t). Hence T has a non-trivial profile
and we need this field to be continuous at the surface of the star. Out of T , we define

A = 1√
−∂ρT gρσ∂σT

, (6.16)

and the unit vector normal to constant-T hypersurfaces as

nµ = −A ∂µT , (6.17)

which on shell satisfies the following equation of motion

∇µnµ = −3
2 λ− φ , (6.18)

where λ and φ being the other two auxiliary field of VCDM. For a solution of VCDM which
is also a solution of GR both λ and φ need to be constant. Then, let us consider both
inside/outside the solution with λ and φ being constants everywhere. Then, on choosing
Gaussian normal coordinates about the matching hypersurface we find

∂l

[√
|h|A∂lT

]
+ ∂s

[√
|h|Ahsr∂rT

]
=
(3

2 λ+ φ

)√
|h| , (6.19)

where l is a coordinate orthogonal to the hypersurface. On integrating about a thin layer in l
and since there are no singular terms we find√

|h|A∂lT
∣∣∣∣
+

=
√
|h|A∂lT

∣∣∣∣
−
, (6.20)

which leads to
A∂lT

∣∣∣
+

= A∂lT
∣∣∣
−
, (6.21)
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or, if T = t, the previous relation can be rewritten as

[Anµ∂µt] =
[

nµ∂µt√
−h00 − (nσ∂σt)2

]
= 0 , or [nµ∂µt] = 0 , (6.22)

having used the continuity of the induced metric hµν . This analysis shows that we need to
impose one extra non-trivial matching condition. In VCDM, we choose T = t (both inside
and outside) so that we have

[nµnµ] = −A[nµ∂µt] = 0 , (6.23)
[eµahµνnν ] = −A[eµa∂µt] = 0 . (6.24)

In summary, the normal to the T -constant hypersurface is the same inside/outside the
hypersurface. These conditions basically ensure the absence of cusp of the T -constant
hypersurface at the intersection with the surface of the star.

7 Analytical and numerical insight on the collapse

In what follows, we will neglect the effect of the cosmological constant, because its value only
gives tiny corrections to the numerical results and will not change the qualitative picture.
This leads to considering K∞ = 0. Before focusing into the numerics we want to explicitly
write down the condition

[nµ∂µt] = 0 , (7.1)

in our case. Let us also redefine for later convenience

κ(t) = κ+κ1(t) , (7.2)

where we remind the reader that (neglecting the effective cosmological constant)

F = 1− rH
r

+ κ(t)2

r4 , κ+ ≡
3
16
√

3r2
H , (7.3)

so that κ1(t) becomes dimensionless. Then this last constraint [nµ∂µt] = 0 can be used as to
constrain the dynamics of κ1(t). The acceptable solutions can be written as

κ1 = ±4
√

3{χs[1− cos f(t, χs)] + f,χ(t, χs) (χ2
s − 1) sin f(t, χs)}[1 + cos f(t, χs)]

3
2

9χ4
s

√
1− cos f(t, χs)

√
1 + (χ2

s − 1)f,χ(t, χs)2
. (7.4)

This shows that once the solution f(t, χ) is known, i.e., if we obtain an appropriate slicing
which satisfies all necessary conditions, the behavior of κ1 is also known.

For the internal solution, in the absence of a cosmological constant, we have already
found in eq. (6.12) that

a2
,f

a4 + 1
a2 = rH

a3χ3
s

, (7.5)

which is solved by

a = 1
2 amax [1 + cos f ] , 0 ≤ f < π , and amax = rH

χ3
s

, (7.6)
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having fixed the initial condition such that a(f = 0) = amax. The singularity of a = 0 is
reached whenever f = π. Using this solution, we want to discuss, given a value of χs, the
values of f for which the solution hits the apparent horizon. In fact, the apparent horizon is
located at the solution for R(t) = rH . In other words, we want to find the value of f = fH at
which this happens. Then we need to solve

rH
χs

= a(f = fH) , (7.7)

which then gives the following result

f = fH ≡ arccos(2χ2
s − 1) . (7.8)

Thus, for a given value of χs, the part of the interior solution with f(t, χs) > fH(χs) is inside
the apparent horizon, as seen from the outer space.

Next, we substitute the function a(f) inside eq. (5.3) as to find an elliptic equation f
which can be rewritten as

f,χχ =
2(1− χ2) f3

,χ

χ
−

3f2
,χ sin f

1 + cos f + (2− 3χ2)f,χ
χ (χ2 − 1) −

3 sin f
(χ2 − 1) (1 + cos f) . (7.9)

This equation does not involve any time derivative and thus can be solved on each constant-t
hypersurface by imposing the following boundary conditions

f(t, χ = 0) = f0(t) , f,χ(t, χ = 0) = 0 , (7.10)

where here the suffix 0 stands for the center of the dust cloud. The second condition is
imposed as to make the slicing non singular at the center of the star.

In case the collapse runs with χ ≤ χs � 1, i.e. for rH � Rmax, the Taylor series in χ
provides an excellent approximation for the solution of f as

f = f0(t) + 1
2

( sin f0(t)
1 + cos f0(t)

)
χ2 + · · ·+O[χ14] , (7.11)

where we have set boundary conditions as to have limχ→0 f,χ = 0. We can also see that
limf0→0 f = 0. In the remaining section, in order to have a firm analytical insight, we will
use this approximate solution.2 On specifying the function f0(t) ≡ f(t, 0), we will also solve
eq. (7.9) numerically (for values of χs closer to unity). In any case the dependence of f on
time is only through the function f0(t).

Then the function f(t, χ), both analytically and numerically, does depend on t only
through f0(t), therefore we have

f(t, χ) = f̃(f0(t), χ) . (7.12)

This is because, as already mentioned, (7.9) with (7.10) can be integrated on each constant-t
hypersurface. Hereafter, for simplicity of notation we express the function on the right hand
side of (7.12) as f((f0(t), χ)) by omitting the tilde.

In the remaining part we will only consider the positive solution for κ1 defined inside
eq. (7.4), so that we have

κ1 = κ̃1(f0(t), χs) . (7.13)
2Numerically, the Taylor series in this solution converges slowly because of the negative powers of 1 + cos f0.

This solution nonetheless gives the same qualitative results as the numerical results, for values of 0 < χs . 10−2.
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Hereafter, for simplicity we express the function on the right hand side as κ1((f0(t), χ)) by
omitting the tilde. In this section, when we do numerics, we will set f0(t) = t, as to try to
reach any point of the solution (making omitting the tilde justified). We know that in any
case 0 ≤ f < π. However, in the analytic description that follows, we will study the behavior
of the solution without specifying any explicit dependence of f0 on time.

7.1 Vanishing lapse as final point of the collapse

Let us consider once more the lapse for the exterior solution (for any value of r). Then one finds

N(t, r) = α(t, r) Ṫ (t) , (7.14)

where

α =
(

1− κ̇

Ṫ

∫ r

∞

1
r2

1
F (t, r1)−3/2dr1

)√
F , (7.15)

F = 1− rH
r

+ κ(t)2

r4 , (7.16)

so that limr→∞ α = 1. We also set boundary conditions for N(t, r) so that limr→∞N(t, r) = 1.
This means that t is the cosmological time, that is the time as measured by an observer far
away from the black hole. In this case we have that

Ṫ = 1 . (7.17)

This, combined with (6.6), leads to

1 =− [κ2Rmax+R4(Rmax−rH)]RR,f0 ḟ0
√
R4−R3rH+κ2

[√
R4−R3rH+κ2

√
R
√
Rmax−rH

√
rH(Rmax−R)+rHκ(Rmax−R)

]
+
(∫ R

∞

1
r2

1
F (t,r1)−3/2dr1

)
κ,f0 ḟ0 . (7.18)

On doing this, f0(t) depends on the collapse parameters: indeed this last condition corresponds
to an ODE for f0, which can be written as

ḟ0 = − 1(∫ 1/R

0
F
(
t, 1
u

)−3/2
du

)
κ,f0

+ [κ2Rmax+R4(Rmax−rH)]RR,f0√
R4−R3rH+κ2

[√
R4−R3rH+κ2

√
R
√
Rmax−rH

√
rH(Rmax−R)+rHκ (Rmax−R)

]
, (7.19)

where we have changed the integration variable from r1 to u = 1/r1. We can insert this value
of ḟ0 into the expression in eq. (7.15) for the lapse N (or α) through κ̇ = ḟ0κ,f0 , where on
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Figure 1. Plot of the function fs = f(f0(t), χs). In the left panel, we show that in the allowed range
of f0, fs and fs,f0 are always finite for a fixed value of χs = 0.01. This behavior holds for other values
of χs as well. In the right figure, we show that the collapse ends inside the apparent horizon of the
metric, this because f > fH . Once more this behavior hold for all values of χs such that 0 < χs < 1.

the right hand side we have considered κ as a function of f0 and χ, finding

N =


1−

κ,f0

∫ 1/r

0
F

(
t,

1
u

)−3/2
du

κ,f0

∫ 1/R

0
F

(
t,

1
u

)−3/2
du

+

[
κ2
R4Rmax+(Rmax−rH)

]
RR,f0

√
F (t,R)

[√
F (t,R)

√
R
√
Rmax−rH

√
rH(Rmax−R)+rH κ

R2 (Rmax−R)
]


×
√
F (κ, r) . (7.20)

The function f,f0 both analytically and numerically keeps finite during the whole evolution,
as it is shown in figure 1.

Therefore for κ2
1 > 1, that is for κ > κ+ (assuming positive κ1), the integral is always

well behaved. If 0 < κ1 < 1 the integral and the squared roots are well behaved as long as
R(t) does not coincide with one of the two real roots of F (t, r) = 1− rH/r+ κ(t)2/r4. In fact,
also the other term in the denominator, the one proportional to R,f0 tends to blow up once
more if R(t) 6= 0 (or f < π) and R(t) is such that F (t, r = R(t)) = 0. Let us then consider
the dynamics of κ1, where

κ = κ+κ1
(
f(f0, χs)

)
, and κ+ = 3

√
3

16 r2
H . (7.21)

We find that it depends on the value of χs. So let us now study this behavior in some detail.
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Figure 2. Plots of κ1 as a function of f0 for different values of χs. In the left panel we can see that
κ1 starts from zero, grows up to a maximum (which is larger than unity) and then κ1 decreases up to
the point it reaches the value of unity (as it can be seen in the right figure). This final value of κ1
being unity takes place when the solution has already entered its own apparent horizon, as discussed
previously in figure 1. In other words, at horizon crossing, we find that κ1(t) > 1.

7.1.1 Small values of χs
For some values of χs, with χs . 0.65, we can distinguish the following stages, which can be
seen in figure 2.

1. First stage: initial collapse. At this stage κ1(f0 = 0) = 0 and κ1,f > 0. This stage does
not show any problem as R ≈ Rmax and F > 0. Soon κ1 reaches values larger than
unity (for which F cannot vanish any more), but κ1,f0 tends to reduce up to a time (or
a value of f0) where it flips sign.

2. Second stage: κ1,f0 < 0 up to horizon crossing. After κ1 has reached a maximum (larger
than unity) indeed κ1 starts decreasing while remaining larger than unity. In this case F
never vanishes. At horizon crossing, that is when f = fH , still κ1 > 1, so the collapsed
star enters its own horizon.

3. Third stage: soon after the solution enters its own horizon, then κ1(f0) keeps decreasing
up to the value of f0 = f0F at which κ1(f0 = f0F ) = 1. In this case, F vanishes for
the value of r0F , r0F = 3rH/4, such that R(f0F ) < r0F < rH . Indeed one can study
both R and κ1 as functions of f0. One sees that κ1(f0) reduces but F (f0, r = R(f0))
reaches its minimum when κ1(f0) is still larger than unity. Then R(f0) will be such that
F (f0, r = R(f0)) will be located to the right of the minimum of the function F (f0, r).
However, as already stated above, f0 reaches a point such that κ1(f0F ) = 1. At this
time there exists an r = r0F at which F (f0, r = r0F ) = 0. This point makes the integral
in the denominator of ḟ0 blow up and also makes ḟ0 vanish. When this happens for some
value of f0 = f0F , one finds that κ1 = 1, however the surface of the star (represented as
a dot in figure 3) is located at R(f0F )/rH < 3/4.

In figure 3 we plot the function F (t, r) (which depends on time via the function κ(t)) at the
instant of time when κ1 becomes equal to unity as to make the integral in eq. (7.19) diverge.
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Figure 3. Reaching the point at which ḟ0 vanishes, for small values of χs. In fact, ḟ0 → 0 at a value
of f0 = f0F such that κ1(f(f0F , χs)) = 1. In this case the integral

∫ 1/R(t)
0 F

(
t, 1

u

)−3/2
du diverges as

the variable u crosses the value 4/(3rH), since κ+ → 1, and R(f0F ) < 3rH/4 as shown as a dot in
the plot.

As a consequence, as we will discuss below, as κ1 → 1 the lapse tends to vanish, i.e. N → 0,
and for the cosmological observer the singularities (e.g. when a vanishes) are never reached,
as the solutions will take an infinite time to reach f0F , i.e. the left zero-F point, as ḟ0 → 0.

7.1.2 Large values of χs
For larger values of χs, i.e. 0.65 . χs < 1, the dynamics of κ1(f0) does change and, in this
case, the collapse works in a different way. In fact, we have that κ1(f0) remains always smaller
than unity. This seems to be giving problems since the beginning of the collapse. However,
the collapse starts at R(f0 = 0) = Rmax > rH so that at least initially Rmax is not one of
the two roots of F . In other words, if κ1 < 1, F can vanish but it does not as long as R
does not reach a minimum critical value, r1,+ = R(f0,+), at which F = 0. We know that
if 0 < κ1 < 1, the function F vanishes at two values of r, rF± so that rF− < 3

4 rH < rF+
and rF+ − rF− → 0 as κ1 → 1−. The collapse stops when, at a given value of f0 = f0,+, we
have that κ1(f0,+) < 1 and F (κ1(f0,+), R(f0,+)) = 0. In fact, we do have that, because of
the collapse, R,f0 < 0 and R(f0) reaches the larger root of F , R = R(f0,+), before κ1 reaches
unity, and this happens indeed at f0 = f0,+. At this point indeed once more both terms
in the denominator of ḟ0 in eq. (7.19) tend to diverge as R approaches the largest root of
F (κ1(f0,+), R(f0,+)) = 0. Figure 4 is devoted to this case.

7.2 Limiting surface

Here we find the limiting surface, i.e. the surface with the largest radius at which N vanishes.
We consider both the small and large values for χs.

7.2.1 Small values of χs
Let us consider here the case of small χs, and define f0F , that is the value of f0 at which
κ1(f0F ) = 1. Then let us also define R0F = R(f0 = f0F ). In general the lapse N (or α) is
a function of time (or f0) and r (as seen from the outer metric point of view). Hence, let
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Figure 4. In the left panel, we show a plot of the function κ1(f0) for a value of χs = 0.8. It is clear
that although κ1 increases, in the allowed domain of f0 it never reaches unity. In the right panel, we
instead show, for the same value of χs, the behavior of F (f0), and it is clear that it vanishes while
0 < κ1 < 1. At this point, that we name as f0 = f0,+, which still happens when the solution has
already entered its apparent horizon, we have that limf0→f0,+ F (κ1(f0), R(f0)) = 0, and as such we
have that limf0→f0,+ ḟ0 = 0.

us evaluate the lapse at f0 = f0F but for r = r+ > R0F at which F (f0F , r+) = 0, that is
N(f0F , r+) and r+ = 3

4 rH . Notice that in this case F (f0F , r = R0F ) 6= 0 in general. Then
setting F+(t, r) = F (t, r : κ = κ+), we have

N(f0F , r+) =
(

1− κ,f0 ḟ0

∫ r+

∞

1
r2

1
F (t, r1)−3/2dr1

)√
F (f0F , r+) =

√
F (f0F , r+)

×



1−
κ,f0

∫ 1/r+

0
F+

(
t,

1
u

)−3/2
du

κ,f0

∫ 1/R

0
F+

(
t,

1
u

)−3/2
du

+

[
κ2

+
R4 +(Rmax−rH)

]
RR,f0

√
F+(t,R)

[√
F+(t,R)

√
R
√
Rmax−rH

√
rH(Rmax−R)+rH

κ+
R2 (Rmax−R)

]



≈

1−

∫ 1/r+

0
F+

(
t,

1
u

)−3/2
du(∫ 1/r+

0
F+

(
t,

1
u

)−3/2
du+

∫ 1/R0F

1/r+
F+

(
t,

1
u

)−3/2
du

)

√
F+(f0F , r+)

=
(

1− 1
1 + C0

)√
F+(f0F , r+) =

√
F+(f0F , r+)

2 = 0 , (7.22)
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because F+(r+) = 0, and

C0 = lim
ε→0+

∫ 1/R0F

1/(r+−ε)
F+

(
t,

1
u

)−3/2
du∫ 1/(r++ε)

0
F+

(
t,

1
u

)−3/2
du

= 1 . (7.23)

This shows that for small χs we have N(f0F , r+) = 0.
Let us now evaluate the lapse N at r = R0F , that is N(f0F , R0F ). As a difference from

the previous calculation, we have that F (f0, R0F ) 6= 0 but finite as seen also in figure 3. We
have that

N(f0F ,R0F ) =
(

1−κ,f0 ḟ0

∫ R0F

∞

1
r2

1
F+(t,r1)−3/2dr1

)√
F+ ,

≈

1+κ,f0
1(

−
∫ 1/R0F

0
F+

(
t,

1
u

)−3/2
du

)
κ,f0

×
∫ 1/R0F

0
F+

(
t,

1
u

)−3/2
du


√
F+

= 0 . (7.24)

This shows that N(f0F , R0F ) = 0, with R0F < r+.
Finally, on evaluating the lapse N at an intermediate point R0F < r0,+ < r+, we find

N(f0F , r0,+) =
(

1− κ,f0 ḟ0

∫ r0,+

∞

1
r2

1
F+(t, r1)−3/2dr1

)√
F+ ,

≈
√
F+

1− 1(∫ 1/R0F

0
F+

(
t,

1
u

)−3/2
du

)

×
(∫ 1/R0F

0
F+

(
t,

1
u

)−3/2
du+

∫ 1/r0,+

1/R0F
F+

(
t,

1
u

)−3/2
du

)
≈ (1− 1)

√
F (r0,+) = 0 , (7.25)

since ∫ 1/r0,+

1/R0F
F+

(
t,

1
u

)−3/2
du∫ 1/R0F

0
F+

(
t,

1
u

)−3/2
du

= 0 , (7.26)

as the numerator is finite. Then this means that, at f0 = f0F , N → 0 from the origin up to
r+ = 3

4 rH . So the limiting surface is r = r+. This result then leads to the conclusion that the
metric, at the end of the collapse (which takes an infinite time t) coincides with the spherical
symmetric static solution having κ = κ+.
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Figure 5. The lapse function N in the outer region (r > r+ = 3
4rH) is plotted for several values of f0

(f0 = 3.116, 3.118, 3.119, 3.1195, 3.11986, 3.12001, 3.12006292) as f0 → f0F .

In particular, on plotting the N as a function of r for the outer metric we can see that
N → 0 as r → r+ as shown in figure 5.

7.2.2 Large values of χs

For large values of χs let us evaluate the lapse at f0 = f0,+ where F (f0,+, R(f0,+)) = 0.
Here we use time f0(t) instead of t to evaluate the lapse function. At this point, setting
κ0,+ = κ(f0,+), the lapse N(f0,+, R0+) is given by

N(f0,+, R0+) =
(

1− κ,f0 ḟ0

∫ R0+

∞

1
r2

1
F (f0,+, r1 : κ0,+))−3/2 dr1

)√
F (f0,+, R0+ : κ0,+)

≈


1−

κ,f0

∫ 1/R0+

0
F

(
f0,+,

1
u

: κ0,+

)−3/2
du

κ,f0

∫ 1/R0+

0
F

(
f0,+,

1
u

: κ0,+

)−3/2
du

+ [κ2Rmax+R4
0+(Rmax−rH)]R0+R,f0√

R4
0+−R

3
0+rH+κ2

0,+ [rHκ0,+ (Rmax−R0+)]


×
√
F (f0,+, R0+ : κ0,+) = 0 , (7.27)

because the quantity in parenthesis is of order unity, but
√
F → 0. Along the same lines

one can show that also for the internal metric N vanishes as ḟ0 → 0, so that the lapse, at
f0 = f0,+, vanishes up to r = R0+. At this time we find that κ1 < 1. Therefore, for large χs’s
the end of collapse asymptotically (in time-t) tends to a static metric having 0 < κ1 < 1. For
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Figure 6. The lapse function N in the outer region for large χs (χs = 0.8), for several values of f0.

other values of r (and f0), we need to evaluate

N(f0, r) =
√
F (κ(f0), r)

×


1−

κ,f0

∫ 1/r

0
F

(
f0,

1
u

)−3/2
du

κ,f0

∫ 1/R

0
F

(
f0,

1
u

)−3/2
du

+

[
κ2
R4Rmax+(Rmax−rH)

]
RR,f0√

F (f0,R)
[√

F (f0,R)
√
R
√
Rmax−rH

√
rH(Rmax−R)+rH κ

R2 (Rmax−R)
]


,

(7.28)

where R = R
(
f(f0)

)
stands for the radius at the surface of the star. We plot N(f0+, r) as a

function of r, in figure 6.

8 Discussion and conclusions

The VCDM theory is a Type IIa minimally modified gravity (MMG). By type IIa we mean a
theory for which an Einstein frame does not exist, i.e. we cannot rewrite the theory by means
of the Einstein-Hilbert action and matter fields coupled to gravity in a whatever non-trivial
way, and in which the propagation of gravitational waves is the same as the propagation
of electromagnetic waves [7]. Furthermore it is a MMG theory, which means that in the
gravity sector, the theory only has two local physical degrees of freedom, the two polarizations
of the standard tensorial gravitational waves. In other words, this theory then does not
add any additional degrees of freedom in the gravity sector (as happens instead in standard
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scalar-vector-tensor theories). The fact, the absence of extra degrees of freedom in the gravity
sector, means we do not need a mechanisms as to screen them. On the other hand, one needs
to see the solutions of VCDM which can be tested against observations. For instance, one
needs to find VCDM solutions which describe black holes and stars. Such solutions, assuming
spherical symmetry, are known to exist and they coincide with GR solutions if both the trace
of the extrinsic curvature (for t-constant slicing) and the auxiliary field φ are constant [4, 6].
The property that VCDM and GR share common solutions was shown in [3], and it always
holds in any spacetime geometry provided that the auxiliary fields of VCDM, φ and λ, are
constant in time and space and that the time-t foliation of the manifold admits a constant
trace for the extrinsic curvature, namely K = K∞. In this paper, we have shown that we can
successfully construct VCDM solutions for a spherically symmetric collapse which are identical
to the analogous solutions in GR. These solutions consist of a spherically symmetric collapse
endowed with a foliation which keeps a constant extrinsic curvature during the collapse itself.

In particular, as in the Oppenheimer-Snyder case, we have a cloud of dust with initial
radius Rmax. For the inside (the dust cloud) metric, we have rewritten a closed homogeneous
and isotropic metric in a coordinate system which has a time-t slicing with K = K∞. For the
outer solution we have instead rewritten the standard Schwarzschild-de Sitter metric once so
that its time-t slicing allows K = K∞. Then we use Israel junction conditions to find the
appropriate matching conditions at the surface of the star. In addition, for VCDM we have
to make sure that all the fields are smooth at the matching surface, in particular that the
constant-t hypersurface does not have any cusp at the junction surface.

In a previous work, [6], it was shown that the stationary spherically symmetric solutions
in VCDM are Schwarzschild solutions written in the following particular coordinate system

ds2 = −N
2

F
[F − β2] dt2 + 2 Nβ

F
dt dr + dr2

F
+ r2

[
dz2

1− z2 + (1− z2) dθ2
2

]
, (8.1)

F = 1− rH
r

+ κ2
0
r4 , (8.2)

β = κ0
r2 , (8.3)

N =
√
F , (8.4)

where we have neglected the contribution coming from the effective cosmological constant.
We have a totally free real parameter κ0. In this paper we have shown that on introducing
κ1 = κ0/κ+ with κ+ ≡ 3

16
√

3r2
H , we see that for t→∞, the collapsing time-dependent solution

approaches the static case solution with 0 < κ1 < 1 (and mirror case for negative κ1’s).
More in detail, from the point of view of the (far-away-from-the-star) cosmological

observer, whose time corresponds to t, the surface of the star always enters its own apparent
horizon (located at r = rH) and keeps evolving until it reaches a configuration for which
the lapse N → 0. However, reaching this point takes an infinite time t. This point does not
corresponds to the standard curvature singularity of the Oppenheimer-Snyder solution. We
have already mentioned that this VCDM collapsing solution (i.e. not only the final static
case but also the time-dependent collapsing one) is also present in GR; however, in GR, this
behavior would corresponds merely to the artifact of the coordinate/foliation choice. Instead
in VCDM, that breaks 4D-diffeomorphism, this foliation has physical meaning as the foliation
which is chosen by the shadowy mode present in the theory. Different foliations correspond to
intrinsically different objects in VCDM, and not all foliations of a given GR metric correspond
to solutions of the VCDM equations of motion.
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The presence of the vanishing lapse endpoint implies the necessity of a UV completion
to describe the physics inside the black hole beyond this point. On the other hand, since
the cosmic time t at the formation of this endpoint is infinite, VCDM can safely describe
the whole history of the universe at large scales without knowledge of the unknown UV
completion, despite the presence of the so-called shadowy mode whose description requires
proper boundary conditions. The same final state could be a possible outcome for other
theories which are endowed with shadowy modes, and further investigations in this sense
could be interesting.

As stated above the final state of the solutions predicts that 0 < κ1 < 1. In particular,
this parameter affects the exterior VCDM solutions, in particular it may influence the behavior
of gravitational waves, and if so, it is actually possible to look for experimental bounds via
the study of gravitational waves. We will defer such a study to a future project.
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A Sturm theorem

Let us study in a bit more details the function

F (t, r) = 1− rH
r

+
κ2

+κ1(t)2

r4 , (A.1)

and in particular let us use the Sturm theorem as to determine the number of real solutions
of the equation r4F = 0. In particular, let us study the zeros of r4F in the case r 6= 0 and
κ1 6= 0. Then we have

r4 − rHr3 + κ2
+κ1(t)2 = 0 . (A.2)

The discriminant of this polynomial is given by

∆ = 39κ4
1
(
κ2

1 − 1
)
r12
H

216 . (A.3)

Then for 0 < κ2
1 < 1 two solutions are real and two are complex. For κ2

1 = 1, there are (at
least) two coincident roots.
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Let us now study the case κ2
1 > 1. According to Sturm theorem on univariate polynomials

with real coefficients, one defines

P0 = r4 − rHr3 + κ2
+κ1(t)2 , (A.4)

P1 = P ′0 = 4r3 − 3rHr2 , (A.5)

P2 = −rem(P0, P1) = 3
16r

2r2
H −

27
256κ

2
1r

4
H , (A.6)

P3 = −rem(P1, P2) = −9
4κ

2
1rr

2
H + 27

16κ
2
1r

3
H , (A.7)

P4 = −rem(P2, P3) = 27
256

(
κ2

1 − 1
)
r4
H . (A.8)

Then the sign of these polynomials at (−∞,+∞) is given by S1 = (+,−,+,+,+) and
S2 = (+,+,+,−,+). So the number of real roots of P0 is given by the difference between
the number V of sign variations inside S1,2, namely3 V (−∞)− V (+∞) = 2− 2 = 0. So for
κ2

1 > 1 we have no real roots.
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