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Proteins are vital for almost all biochemical and cellular processes.  Although 

there is an enormous growth in the protein sequence data, the statistical 

characterization, structure and function of many of these sequences are still 

unknown. The statistical and spectral analysis of the Pearson correlation 

matrices between positions based on physiochemical properties of amino acids 

of seven protein families is performed and compared with the random Wishart 

matrix model results. A detailed analysis shows that the protein families 

significantly diverge from the Marchenko-Pastur distribution with many 

eigenvalues (outliers) outside the Wishart lower and upper bound. It is shown 

that level spacing distribution of protein families is similar to the Gaussian 

orthogonal ensemble. Further, the number variance varies as log of the system 

size indicating the presence of long range correlations within the protein 

families.  

 

 

1. Introduction 

 

In molecular biology, there is one fundamental question that is how does an amino acid sequence 

determine the biological, functional, and structural properties of the protein sequence. In this context, 

we study the statistical and spectral properties of the cross-correlations between positions based on 

the physiochemical properties of amino acids. This study is a large-scale statistical analysis based on 

random matrix theory which uses physio-chemical properties-based correlation matrices of multiple 

protein families downloaded from the PFAM (1) database. 

      Random matrix theory proved its importance in diverse fields with a wide range of applications 

ranging from nuclear physics (2), biological physics (3,4), the stock market (5), and many more. We 

find that the results from the random matrix theory on Wishart matrices are of prime importance to 

understanding the statistical structure of the interaction and correlations between positions in the 

protein families. The properties of physio-chemical-based correlation matrices are compared with the 

analytical results of Wishart matrices (6,7). A Wishart matrix is computed as W=DD†, where D is a 
random matrix (dimension N x M,) with entries following a Gaussian distribution that has zero mean 

and unit variance. D† is the complex conjugate of D.  

     For each family, protein sequences are processed, filtered, and then create the multiple sequence 

alignment (MSA). The two-dimensional MSA is converted into a three-dimensional data matrix, by 

using the physio-chemical properties of amino acids in which the amino acid is replaced by its 

physiochemical property value. The physio-chemical property is represented by the third dimension 

of the data matrix. Firstly we study the statistical properties of independent off-diagonal elements of 
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the data correlation matrix and compare the results with Wishart matrices. We plot and analyze the 

probability density function (PDFs) of the system correlations and Wishart matrices. We find that for 

most of the protein families, the distribution differs significantly from Wishart on the upper as well as 

on the lower side, indicating the presence of high correlation and anti-correlations, which are the 

result of evolutionary coupling and natural selection. These correlations are not of random origin. The 

dependence of correlation between different physiochemical properties was checked as they were 

derived from the same data (MSA). We find the structure of correlation for a given protein family 

calculated using properties shows less similarity with other property indicating that each property 

reveals new information.  

    The eigenvalue distributions of protein families for all properties were compared with the 

analytical results for Wishart matrices. Wishart matrices are studied in great detail with the spectral 

eigenvalue density function which follows the Marchenko-Pastur distribution with well-defined upper 

and lower bounds on the eigenvalues. Protein families show significant divergence from the 

Marchenko-Pastur distribution with many eigenvalues outside the Wishart lower and upper bound. 

These eigenvalues contain significant information about the system.  

     Next, we study the nearest neighbor eigenvalue spacing distribution. We find that the presence of 

short-range correlations between eigenvalues for most of the protein families are in agreement with 

the level spacing of Gaussian orthogonal ensemble and represent a universal feature. To check for the 

long-range correlation between the eigenvalues we calculate the number variance for protein families 

for all properties. The analysis shows that for proteins the number variance varies approximately as 

log (L), where L is system size (number of positions in MSA). The variation of the number variance 

as log of the system size indicates the presence of long-range correlations within the system. 

 

2. System and Data 

 

For the analysis, we use 7 different protein families. The multiple sequence alignment (MSA) was 

downloaded from PFAM. The details of the protein families used are as follows: 

 

1) Mitochondrial Protein (PF00153): Mitochondrial proteins resides within the mitochondria of 

cells. They are responsible carrying out reactions of the electron transport chain. The MSA  of this 

protein family consists of 160 sequences each of length 101. 

 

2) Expanded EBP (EXPERA) Protein (PF05241): EBP enzyme catalyzes the transposition of a 

double bond in the sterol B-ring. The MSA  consists of 675 sequences each of 134 positions. 

 

3) CAP-Gly Protein (PF01302): Cytoskeleton-associated proteins (CAPs)  helps in 

transportation of vesicles and organelle  along the cytoskeletal network as well as helps in the 

organization of microtubules. The MSA  consists of 593 sequences each of 83 positions. 

 

4) Cadherin 4 Protein (PF17803): Cadherin 4 Protein has many bacterial-like domains those are 

part of extracellular proteins. The MSA  consists of 694 sequences with 77 positions.  

 

5) IPD Protein (PF00475): IPD enzyme involves in the cutting of the carbon-oxygen bond which 

participates in the histidine metabolism.  The MSA  consists of 487 sequences with 151 positions.  
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6) Histidine Kinase Protein (PF02518): Histidine Kinase Proteins are the part of several ATP-

binding proteins. The MSA  consists of 685 sequences with 155 positions.  

 

7) HAM1 Protein (PF01725): HAM1 family controls 6-N-hydroxylaminopurine in S. cerevisiae. 

It also protects the cell from HAP, either on the level of deoxynucleoside triphosphate or the DNA 

level. The MSA  consists of 1061 sequences with 208 positions. 

 

The multiple sequence alignment (MSA) of each family is downloaded from the PFAM database. The 

MSA is first processed and then transformed into a 3-dimensional data matrix using different physio-

chemical properties. In the current article, we have used 4 different physiochemical properties namely 

hydrophobicity, polarity, volume, polarizability. The physio-chemical properties of each amino acid 

are downloaded and then we rescaled the values between -1 to 1, where 1 is the maximum value and -

1 is the minimum value of a given physiochemical property.  The rescaled values of amino acids are 

substituted in the MSA, which results in a 3-dimensional data matrix. The details of the process are 

given in (8,9). For each family we obtain a 3-dimensional data matrix  ܦ௦,௜𝛾
 , where i represents the 

position (column), s represents the sequence (row) in the MSA, and γ indicates the physiochemical 
property under consideration.   

 

Methods 

 

Sequence Vector 

 

Using the data matrix, we create a sequence vector to check the trends in the property values. For  

each protein sequence we create sequence vector  ௦ܹ𝛾
  is defined as                                                              ௦ܹ𝛾ሺ𝑖ሻ = ∑ ௦,௠𝛾ܦ                                                          [ͳ]௜

௠=ଵ  

 

 

The sequence vector ௦ܹ𝛾
 , is the cumulative sum of the properties values of all previous amino 

acids.  The sequence vector is a graphical way to visualize and compare the protein sequences.  The 

sequence vector representation depends on the physio-chemical properties with different properties 

resulting in different representations of the same protein sequence.  

 

The sequence vector is also helpful in determining the key properties responsible for the function and 

working of a given protein family. The underlying argument to identify the important 

physicochemical properties is that since all sequence belongs to the same family, they have an 

identical function, therefore the properties responsible for the function of the family will show an 

identical trend. Since all sequences are different at the sequence level (amino acids), and they show 

similar trends in the given physio-chemical property, this implies that change in the amino acid type 

does not make significant changes in the sequence vector. This similarity in the trend of sequence 

vector indicates that the property is conserved for the family and may be responsible for its structure 

and function. We analyze the sequence vectors for all the seven families and the results are discussed 

in the Results section. 

 

 

Correlation Matrix 
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Using the data matrix, we construct the correlation matrix for each physio-chemical property and for 

each family. The element of the correlation matrix is defined as the Pearson’s correlation coefficient 
between the positions in the MSA for a given property.  For a property  γ, the correlation is calculated 
between columns of the data matrix ܦ𝛾,  which results in a correlation matrix  ܥ𝛾  given by  

௜,௝𝛾ܥ                                                = < (݀௜𝛾− < ݀௜𝛾 >ሻ ( ௝݀𝛾−< ௝݀𝛾 >) > )𝜎𝑑೔𝛾𝜎𝑑ೕ𝛾                                        [ʹ] 
 

where the ith  column of the data matrix ܦ𝛾 is given by ݀௜𝛾  with   𝜎𝑑೔𝛾   as the standard deviation. The 

average ( < ·  ·  ·  > ) is defined over the sequences.  The correlation matrix is calculated for all 

properties, and can be represented as a 3-dimensional matrix  ܥ𝛾 , here the third dimension is the 

physiochemical property dimension.   

 

The correlation matrix depends on the coevolution of the physiochemical properties. If there is a 

change in amino acid type at one position, its correlation with another position for a given 

physiochemical property is not affected if the new amino acid has the same value as the 

physiochemical property.  The property-based correlation results in the correlation between the 

properties values at the different positions during the course of evolution. The correlation matrix of 

each family for 4 different properties is calculated and discussed in the Results sections. 

 

Spectral Analysis of Correlation Matrix: 

 

For a given family, the eigenvalues and eigenvectors of the correlation matrix for each 

physiochemical property are calculated.  The eigenvalue distribution of the correlation matrix is 

created. In order to quantify the statistical noise representing the phylogenetic effects in the data and 

estimate the random noise, we make use of the Wishart matrices (6,7) Wishart matrices are sample 

correlation matrices from a multivariate normal distribution.  For a random matrix Z of dimension N 

× M with entries distributed as  Gaussian random variable having mean as zero and variance as one. 

The correlation matrix resulting from the random matrix Z is a Wishart matrix.  The spectral 

properties of Wishart matrices are studied in detail (6,7).  The probability density function ௥ܲ𝑎௡ሺ𝜆ሻ  of 

the Wishart matrices follow the Marcenko-Pastur distribution  distribution  

                                                       ௥ܲ𝑎௡ሺ𝜆ሻ = ܳʹ𝜋𝜎ଶ  √ሺ 𝜆+ − 𝜆ሻሺ𝜆 − 𝜆−ሻ𝜆                                   [͵] 
 

where Q is defined as  ratio of number of observations (sequences) and number of variables 

(Positions) ie Q= S/L ≥ 1.   The upper and lower bounds of the eigenvalue distribution is given by  
                                                             𝜆±  = 𝜎ଶ ቌͳ + ͳܳ ± ʹ√ͳܳቍ                                            [Ͷ] 
 

The eigenvalue bounds for all the families are estimated and compared with the largest and the 

smallest eigenvalues of the property based correlation matrices.   

 

 

Universal properties 
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Nearest-neighbor eigenvalue spacing distribution 

Next, we create the level spacing distribution for the protein families. The level spacing distribution 

also known as nearest-neighbor spacing distribution is estimated for all families with different 

physiochemical properties. To construct the level spacing distribution,  first, an unfolding process is 

done on the eigenvalue spectra. The unfolding transforms the eigenvalues in terms of the local 

average spacings, the details of the process can be found in (5, 10,11).  In the new system, the 

modified eigenvalues  𝜒௜  has a unit local density.  The level spacing distribution of a protein family 

is compared with the level spacing distribution of the correlation matrix created from a matrix X with 

the same dimension as the protein family but belongs to the Gaussian orthogonal ensemble (GOE). 

The GOE correlation matrix is given by                                                                        ܥ𝐺𝑂𝐸 = ͳ𝑆 ܺܺ𝑇                                                       [ͷ] 
 ܺ𝑇is the transpose of the random matrix X.  The Wishart matrix and ܥ𝐺𝑂𝐸 are the same.  The nearest-

neighbor spacing between two levels is given by  s= 𝜒௜+ଵ − 𝜒௜ where 𝜒௜+ଵ and 𝜒௜ are two consecutive 

eigenvalues arranged in the ascending order.  The nearest-neighbor spacing distribution of the ܥ𝐺𝑂𝐸 is 

given by  

                                                               𝐺ܲ𝑂𝐸ሺ𝑠ሻ = 𝜋𝑠ʹ ݁𝑥 𝑝 ቆ−𝜋𝑠ଶͶ ቇ                                    [͸] 
 

     The nearest-neighbor spacing distribution of each protein families with different physio-chemical 

properties is created and compared with 𝐺ܲ𝑂𝐸. The  next nearest-neighbor spacing distribution is also 

compared for the 𝐺ܲ𝑂𝐸 and protein families. 

 

Long-range eigenvalue correlations: 

 

Level spacing distribution (nearest-neighbor) captures the short range correlation within the 

eigenvalue spectrum. To study the long range correlations, we calculate the number variance  𝛴ଶሺLሻ, 

and study its variation for different physiochemical properties.  The number variance is given as                                      𝛴ଶሺLሻ =< [𝑁 (𝜒 + 𝑙ʹ ) − 𝑁 (𝜒 − 𝑙ʹ ) − 𝑙]ଶ >𝜒                            [͹] 
 

 

The quantity N(χ) defined as N(χ)  =∑ 𝛩ሺ𝜒 − 𝜒௜ሻ௜   is the integrated unfolded density. The average is 

done over the unfolded eigenvalues. The number variance variation with l is studied. For the a 

uncorrelated spectrum the number variance varies as l. For the GOE ensemble the number variance 

shown ln(l) (12). We check the number variance all seven families are estimated and analyzed and is 

shown in the Results section.  

 

 

 

Results 

 

The proposed method is applied to all seven protein families which were taken from the PFAM 

database.   The details of the eigenvalue statistics for all families are given in Table 1.  Protein 

families show significant divergence from the Marchenko-Pastur distribution with many eigenvalues 
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outside the Wishart lower and upper bound. The number of eigenvalues outside the Wishart bounds 

or the outliers changes with physiochemical properties even within a family although they are derived 

from the same MSA. The details of each family analyzed are given below.  

 

a) Mitochondrial Protein (PF00153): The MSA consists of 160 sequences each of length L=101. 

The MSA is first converted into the 3-dimensional data matrix. We then create the sequence vector 

from the data matrix.  The sequence vector of the first 3 sequences for four physicochemical 

properties is shown in Figure 1. We observe that all the sequences follow the same trend for the 

hydrophobicity property. This indicates that the hydrophobicity property is conserved for the 

Mitochondrial Protein family.  The three other properties show significant differences in the sequence 

vector. 

 
 

Figure 1.  Plot of the three sequence vectors with first 40 positions for 4 physiochemical properties 

for Mitochondrial Protein family. 

 

     For the mitochondrial protein family, the correlation matrix is constructed for all four 

physiochemical properties and the eigenvalues and eigenvectors are estimated. The details of the 

eigenvalues, as well as the comparison with Wishart matrices, are given in Table 1.  The eigenvalue 

bounds are the same for all properties as they depend only on the size of MSA and are independent of 

the property under consideration.  The eigenvalue distribution is shown in Figure 2.  For the 

eigenvalue spectra, the nearest neighbor spacing distribution is created and is shown in Figure 3(a) 

for hydrophobicity. The spacing distribution for other properties is identical to hydrophobicity. The 

spacing distribution shows resemblance to GOE and hence is from the same universality class. The 

next nearest spacing distribution Figure 3(b) and the number variance Figure 3(c), also suggest that 

the family closely follow the GOE universal class. The number variance varies as ln(l) which is the 

same as observed in GOE matrices. 
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Table 1.  Details of the eigenvalue statistics of each family  for different phyochemical properties with  the theoretical 

eigenvalue RMT bounds  on eigenvalues. 
   
Protein Fami-

ly 

 

Property Size EV 

Bounds  

 𝝀 < 𝝀− 𝝀 >  𝝀+ Smallest 𝝀 Largest 𝝀  

Mitochondrial  

 

Hdrophobicity S=160 

L=101 

0.05-3.21 

 

6 5 0.025 6.37 

Polarity 5 5 0.024 7.15 

Polarizability 6 5 0.021 5.72 

Volume 7 6 0.033 5.63 

Expanded EBP 

  
Hdrophobicity S=675 

L=134 

0.29-2.09 36 10 0.039 25.47 

Polarity 32 8 0.026 27.09 

Polarizability 28 9 0.039 25.65 

Volume 38 11 0.039 25.64 

Cap-Gly 

 
Hdrophobicity S=593 

L=83 

0.4-1.88 12 8 0.172 5.75 

Polarity 14 9 0.064 6.98 

Polarizability 18 6 0.238 4.07 

Volume 13 5 0.784 7.89 

Cadherin 4 

 
Hdrophobicity S=694 

L=77 

0.45-1.77 7 5 0.344 3.47 

Polarity 6 5 0.267 3.70 

Polarizability  7 6 0.280 4.35 

Volume 5 4 0.322 3.96 

IPD Protein 

 
Hdrophobicity S=487 

L=151 

0.19-2.43 23 12 0.001 7.19 

Polarity 29 9 0.001 8.32 

Polarizability 32 8 0.005 6.721 

Volume 26 9 0.0004 6.87 

Histidine Ki-

nase 

 

Hdrophobicity S= 658 

L=155 

0.28-2.2 25 10 0.127 10.53 

Polarity 23 6 0.142 9.245 

Polarizability 27 8 0.100 11.17 

Volume 

24 5 0.094 10.65 

HAM1  Hdrophobicity S=1061 

L=208 

 

0.31-2.07 50 15 0.018 25.81 

Polarity 48 12 0.017 24.58 

Polarizability 45 14 0.022 25.34 

Volume 47 9 0.051 18.59 
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Figure 2.  Eigenvalue distribution of Mitochondrial Protein family for all properties. 

 

 
 

 

 

 
 

 

 

 

 
 

(a)     (b)                                                   (c) 

Figure 3.  (a) Nearest neighbor eigenvalue spacing distribution (b) Next Nearest neighbor eigenvalue 

spacing distribution for the unfolded eigenvalues of the correlation matrix based on the 

hydrophobicity property for the Mitochondrial protein. The solid line is the density plot for the 

Mitochondrial Protein family and the dashed line is the nearest and next nearest neighbor spacing 

distribution for correlation matrix created for the GOE ensemble. (c) Number Variance calculated 

from unfolded eigenvalues. 

 

b).Expanded EBP (EXPERA) Protein (PF05241): EBP enzyme family consists of MSA with 675 

sequences and 134 positions giving the theoretical estimates for the random bounds on the 

eigenvalues as 𝜆+ = ʹ.Ͳͻͺ   and  𝜆− = Ͳ.ʹͻͺ.  The sequence vector for three sequences and the first 

40 residues is shown in Figure 4.  We find that there is no conserved property for this family. The 

eigenvalue statistics is given in Table 1.  The family also belongs to the GOE universal class as 

shown by the nearest-neighbor spacing distribution  Figure 6(a), next nearest-spacing distribution 

Figure 6(b) and number variance Figure 6(c).  

 

 
 

Figure 4.  Plot of the three sequences with first 40 positions for different properties for the Expanded 

EBP Protein family. 
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Figure 5.  Eigenvalue distribution of Expanded (EBP) Protein family for Hydrophobicity 

 

 

 
(a)         (b)     (c) 

Figure 6. (a) Nearest neighbor eigenvalue spacing distribution (b) Next Nearest neighbor eigenvalue 

spacing distribution for the unfolded eigenvalues of the correlation matrix based on the 

hydrophobicity property for the EXPERA family. The solid line is the density plot for the EXPERA 

Protein family and the dash line is the nearest and next nearest neighbor spacing distribution for 

correlation matrix created GOE ensemble.(c) Number Variance for family created from unfolded 

eigenvalues 

 

c). CAP-Gly Protein (PF01302):  The MSA of this family consist of 593 sequences with 83 

positions giving the RMT bounds as  𝝀+ = ૚. ૡૡ and 𝝀− = ૙. ૝ . The sequence vector [Figure 7] 

shows that the there is a slight conservation  hydrophobicity, there is a significant divergence in 

sequence vector for all other properties. This family strongly belongs to the GOE universal class as 

shown by the nearest-neighbor spacing distribution  Figure 9(a), next nearest-spacing distribution 

Figure 9(b) and number variance Figure 9(c) with very strong resemblance to GOE ensemble.  

 

 
 

Figure 7.  Plot of the three sequence vectors with first 40 positions for 4 physiochemical properties 

for CAP-Gly Protein family. 
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Figure 8. Eigenvalue distribution of CAPs Protein family for Hydrophobicity 

 

 
             (a)    (b)     (c) 
Figure 9. (a) Nearest neighbor eigenvalue spacing distribution (b) Next Nearest neighbor eigenvalue 

spacing distribution for the unfolded eigenvalues of the correlation matrix based on the 

hydrophobicity property for the CAPs Protein family. The solid line is the density plot for the CAPs 

Protein family and the dash line is the nearest and next nearest neighbor spacing distribution for 

correlation matrix created GOE ensemble.(c) Number Variance calculated from unfolded 

eigenvalues. 

 

d). Cadherin 4 Protein (PF17803):  MSA of this family consist of 694 sequences with 77 positions 

giving the RMT bounds as  𝝀+ = ૚. ૠૠ and 𝝀− = ૙. ૝૞ . The sequence vector [Figure 10] shows that 

the there is a slight conservation in polarizability and hydrophobicity. The spacing distribution 

[Figure 12(a)] shows close resemblance to GOE and hence is from the same universality class. The 

next nearest spacing distribution [Figure 12(b)] and the number variance [Figure 12(c)], also suggests 

that the family closely follow the GOE universal class.  

 

 

 
 

Figure 10.  Plot of the three sequence vectors with first 40 positions for 4 physiochemical properties 

for Cadherin 4 Protein family. 
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Figure 11. Eigenvalue distribution of Cadherin Protein family for Hydrophobicity 

 

 

 
(a)     (b)       (c) 

Figure 12.  (a) Nearest neighbor eigenvalue spacing distribution (b) Next Nearest neighbor 

eigenvalue spacing distribution for the unfolded eigenvalues of the correlation matrix based on the 

hydrophobicity property for the Cadherin Protein family. The solid line is the density plot for the 

Cadherin Protein family and the dash line is the nearest and next nearest neighbor spacing distribution 

for correlation matrix created GOE ensemble.(c) Number Variance calculated from unfolded 

eigenvalues. 

 

e). IPD Protein (PF00475): IPD protein family has 487 sequences and 151 positions giving the 

theoretical estimates for RMT bound on eigenvalues distribution as  𝜆+ = ʹ.Ͷ͵   and  𝜆− = Ͳ.ͳͻ.  The 

sequence vector for three sequences and the first 40 residues is shown in Figure 13.  .  The family 

also belongs to the GOE universal class as shown by the nearest-neighbor spacing distribution  Figure 

15(a), next nearest-spacing distribution Figure 15(b) and number variance Figure 15(c). 

 

 

 
Figure 13.  Plot of the three sequence vectors with first 40 positions for 4 physiochemical properties 

for IPD Protein family 
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Figure 14.  Eigenvalue distribution of IPD Protein family for Hydrophobicity. 

 
 

 
(a)                       (b)                                                  (c) 

Figure 15. (a) Nearest neighbor eigenvalue spacing distribution (b) Next Nearest neighbor eigenvalue 

spacing distribution for the unfolded eigenvalues of the correlation matrix based on the 

hydrophobicity property for the IPD Protein family. The solid line is the density plot for the IPD 

Protein family and the dash line is the nearest and next nearest neighbor spacing distribution for 

correlation matrix created GOE ensemble.(c) Number Variance calculated from unfolded 

eigenvalues. 

 

f) Histidine Kinase Protein (PF02518): The MSA of this family has  658  sequences and 155 

positions giving the theoretical RMT estimates on the eigenvalues as 𝜆+ = ʹ.ʹͲ   and  𝜆− = Ͳ.ʹͺ.  

The sequence vector for [Figure 16] shows that there is no conserved property for this family. The 

family also belongs to the GOE universal class as shown by the nearest-neighbor spacing distribution  

Figure 18(a), next nearest-spacing distribution Figure 18(b) and number variance Figure 18(c). 

 

 

 
 

Figure 16.  Plot of the three sequence vectors with first 40 positions for 4 physiochemical properties 

for   Histidine Kinase Protein family. 
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Figure 17.  Eigenvalue distribution of Histidine Protein family for Hydrophobicity. 

 

 
(a)      (b)     (c) 

Figure 18. (a) Nearest neighbor eigenvalue spacing distribution (b) Next Nearest neighbor eigenvalue 

spacing distribution for the unfolded eigenvalues of the correlation matrix based on the 

hydrophobicity property for the Histidine Protein family. The solid line is the density plot for the 

Histidine Protein family and the dash line is the nearest and next nearest neighbor spacing distribution 

for correlation matrix created GOE ensemble.(c) Number Variance calculated from unfolded 

eigenvalues. 

 

g) HAM1 Protein (PF01725): HAM1 family consists of  1061  sequences and 208 positions giving 

the theoretical RMT bounds as 𝜆+ = ʹ.Ͳ͹   and  𝜆− = Ͳ.͵ͳ.  The sequence vector for [Figure 19] 

shows that there is no conserved property for this family. The family also belongs to the GOE 

universal class as shown by the nearest-neighbor spacing distribution [Figure 21(a)], next nearest-

spacing distribution [Figure 21(b)] and number variance [Figure 21(c)]. 

 

 
Figure 19.  Plot of the three sequence vectors with first 40 positions for 4 physiochemical properties 

for HAM1 Protein family 
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Figure 20.  Eigenvalue distribution of HAM1 Protein family for Hydrophobicity 

 

 

 
(a)    (b)     (c)   

Figure 21. (a) Nearest neighbor eigenvalue spacing distribution (b) Next Nearest neighbor eigenvalue 

spacing distribution for the unfolded eigenvalues of the correlation matrix based on the 

hydrophobicity property for the HAM1 Protein family. The solid line is the density plot for the 

HAM1 Protein family and the dash line is the nearest and next nearest neighbor spacing distribution 

for correlation matrix created GOE ensemble.(c) Number Variance calculated from unfolded 

eigenvalues 

 

 

Conclusions 

 

We study the spectral properties of the correlation matrix created with 4 different physicochemical 

properties for multiple protein families. The eigenvalues statistics are compared with the RMT 

bounds from the Marchenko-Pastur distribution and the number of eigenvalues outside the bounds are 

estimated containing significant information about the system.  All families show significant 

divergence from the RMT results.  The protein families follow the GOE universality class as tested 

with the level spacing distribution and number variance which varies as the log of the size of the 

system similar to the GOE ensemble. 
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