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Supplementary material

Tensor notations

	 In tensor network notation, as proposed by Roger Penrose 
in 1971, a tensor is represented by a geometric shape called 
a node and the indices are denoted by edges (legs) extending 
from these shapes. A scalar is represented as a node (circle) 
without any legs as it has no dimension (index), a vector Vj is 
a 1-dimensional object with only 1 index and is represented as 
a node with 1 edge (line). A matrix Mij is 2-dimensional object 
with two indices i and j and is represented by a node with two 
edges. Similarly, a rank 3 tensor Tij is denoted as a node with 
3 edges. An n-rank tensor will be represented by a node with 
n edges. Tensor network notation makes it easier to follow the 
tensor operation. Matrix product or tensor contraction is the 
most common tensor operation and is inspired by the Einstein 
summation convention for tensor contractions. The general rule 
for contracting tensors is that the two edges (lines) connected 
with each other implies a contraction, or summation, over 
the connected indices. Fig. S1A shows the Penrose graphical 
representation of scalar, vector, matrix and a 3-rank tensor. 
Fig. S1B shows some examples of tensor contraction. The 
first example is the multiplication of a matrix M with a vector 
V along the direction of index j. The resultant is the vector U  
with dimension i. The multiplication of two matrices A and 
B results in a matrix C with dimension i being the same as  

the rows of A and the k columns of B. The summation sign is  
omitted, as in summation convention the repeated indexes are 
summed over. The third example is the trace of the product 
of two matrices, which results in a scalar S. The last example 
is the product of a matrix with a rank-3 tensor resulting in  
another rank 3 tensor. 
	 Matrix product states (MPS) are the best understood tensor 
networks. MPS (also known as tensor train) are a family of 
tensors where a large tensor with N dimensions (N edge index) 
is factorized as a linear chain of small rank 3 tensors (3 index 
tensor) in the center and rank 2 tensors at both ends, as shown 
in Fig. S2. In Fig. S2, a 5-dimensional tensor is factorized 
into 5 small dimensional tensors (3 tensor of 3 dimension 
and 2 boundary tensors of 2 dimensions). This factorization 
substantially reduces the total number of parameters.  
The above factorization can be generalized for a tensor with 
any number of dimensions (indices). Mathematically, tensor 
factorization of a N dimensional tensor T with indices ii,i2,·· ,iN 

can be approximated as the product of lower rank tensors A's, 
as shown in Equation 1:

	 	           (1)
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Fig. S2	 Matrix product states factorization of rank 5 tensors

Fig. S1	 (A) Tensor notation representing a scalar, vector, matrix and a third order tensor; (B)  rules for tensor contraction used in tensor network
Matrix product states 

	 where α is known, as the bond indices are contracted or 
summed over. All the A's are different from each other and are 
distinguished from each other by the indices. Equation 1 can be 
represented in the MPS form, as shown in Fig S2. MPS are very 
successful in explaining the quantum system (especially one-
dimensional systems) but recently have been very effective in 
fields, such as compressing high-dimensional data, machine-
learning applications, such as a supervised kernel linear 
classifier, and in unsupervised generative modelling. MPS 
can be successfully applied to machine-learning task as they 
can effectively capture 1-dimensional correlations in the 
system but also, they can be modified for systems with higher 
dimensional correlations.
	 The tensor operation of contracting the bond indices α in 
Equation 1 will result in a good approximation of the tensor 
T for a sufficiently large value of α. The dimension of α is 
known as the bond index, sometimes called as tensor-train 
rank or virtual dimension. The bond dimension (m) can be 

considered as a parameter that controls the expressivity of the 
MPS. For a tensor T i1,i2,...,iN with all N indices having the same 
dimension d, then, this tensor can be exactly represented as  
an MPS by choosing the bond dimension m = dN/2. The 
advantage of replacing a big tensor T into an MPS is the 
reduction in the number of parameters required to specify the 
tensor. Given a tensor T with N indices each of dimension d, 
then dN parameters are required to specify the tensor. Whereas 
if the tensor is approximated into an MPS with bond dimension 
m, then the number of parameters required is 2md from ends 
and (N − 2)md2 from the center. For large N, the parameters can 
be approximated as Ndm2. The conversion of a tensor to MPS 
represents a great compression in the number of parameters as 
in the first case the parameters grow exponentially (dN) with N, 
whereas in MPS, it grows linearly (Ndm2) with N. The bond 
dimension is a parameter that can be chosen to best suit the 
need of the problem.
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Fig. S3	 Training and validation accuracy of the tensor network model with 2 and 3 units and k-mer in range 2–5

Plots for different number of units and k-mers
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Fig. S4	 Loss and validation loss of tensor network model for 2 and 3 units and k-mer in range 2–5
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Fig. S5	 Normalized confusion matrix for prediction on test set for tensor network for units 2 and 3


