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a b s t r a c t

We consider a cosmological model of non-minimal derivative coupling (NMDC) to gravity with
holographic effect from Bekenstein–Hawking entropy using Hubble horizon IR cutoff. Holographic
parameter c is considered constant with value in a range, 0 ≤ c < 1. The NMDC effect is
considered either as modification in kinetic scalar field or in gravitational constant. The NMDC effect
allows gravitational constant to be time-varying. Since the NMDC effect is cosmological, definition of
holographic density should include time-varying part of the gravitational constant. The NMDC part
reduces strength of gravitational constant for κ > 0 and opposite for κ < 0. The holographic part
enhances gravitational strength. Slow-roll parameters are derived. We use spectral index and tensor-
to-scalar ratio to test the model against CMB constraint. Number of e-folding is chosen to be N ≥ 60.
Power-law scalar potentials, V = V0φ

n with n = 2, 4, and exponential potential, V = V0 exp (−βφ)
are considered. Combined parametric plots of κ and φ show that the allowed regions of the power
spectrum index and of the tensor-to-scalar ratio are not overlapping. NMDC inflation is ruled out and
the holographic NMDC inflation is also ruled out for 0 < c < 1. NMDC significantly changes major
anatomy of the dynamics, i.e. it gives new late-time attractor trajectories in acceleration regions. The
holographic part clearly affects pattern of trajectories. However, for the holographic part to affect shape
of the acceleration region, the NMDC field must be in presence. To constrain the model at late time,
variation of gravitational constant is considered. Gravitational-wave standard sirens and supernovae
data give a constraint, Ġ/G|t0 ≲ 3 × 10−12 year−1 (Zhao et al., 2018) which, for this model, results in
10−12 year−1 ≳ −κφ̇φ̈/M2

P . Positive κ is favored and greater c2 results in lifting up lower bound of
κ .

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Over the last decades, numerous approaches (as reviewed
n [1–9] and many references therein) have been purposed to
larify cosmological puzzles, e.g. present acceleration with w ≈

1 [10–17] and graceful exit of the inflation confirmed by CMB
18–20]. One approach to explain late-time acceleration is dark
nergy, a hypothetical source of repulsive pressure with equa-
ion of state w < −1/3. These dark energy models include
osmological constant and dynamical scalar fields. Inclusion of
ark energy is to add extra degrees of freedom to the matter
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Lagrangian. The other major idea is to make some modifications
to gravitational sector. The geometry sector is modified in form
of function of Ricci scalar, Ricci tensor and Riemann tensor in this
approach [21]. Many of other hypotheses are of mixed types such
that couplings among barotropic fluid, scalar sector and geometry
sector are allowed. Scalar-tensor theories have rich implications
of these couplings [4,22,23]. As there is coupling between matter
and scalar field, chameleon screening mechanism is required to
protect these models from mediating long-range fifth force [24].
The coupling function in form of f (φ, φ,µ, φ,µν, . . .) to gravita-
tional sector are inspired in many theories such as scalar quantum
electrodynamics or in gravitational theories of which Newton’s
constant is a function of the density [25]. It was shown that other
non-minimal derivative coupling (NMDC) to gravity terms apart
from Rφ,µφ,µ and Rµνφ,µφ,ν are unnecessary [26]. These two
terms exist in lower energy limits of higher dimensional theories
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r Weyl anomaly of N = 4 conformal supergravity [27,28].
It is interesting that NMDC gravity in form of κ1Rφ,µφ,µ and
κ2Rµνφ,µφ,ν usually gives de-Sitter expansion [29] and they can
be further modified to κ ≡ κ2 = −2κ1 [30–32] resulting a hint
of NMDC term coupling to the Einstein tensor, Gµν . Both metric
ensor and the Einstein tensor are divergence-free, therefore the
heory is naturally settled [33–51]. Further versions of the the-
ries are those of generalized type of scalar-tensor theories, for
xamples, galileons [52–54] and the Fab-Four [55] with at most
econd-order derivative with respect to its dynamical variables
hich are the metric tensor and the scalar field. It is found that
he NMDC term is a sub-class of the Horndeski Lagrangian [56–
8] and surely a sub-class of the beyond Horndeski theories such
s GLPV theories [59].
On cosmological aspects, the coupling κ , if allowed to vary or

hange sign, could enhance or reduce contribution of the free
inetic term [30] which in turn affects power spectral index,
ensor-to-scalar ratio, evolution of the equation of state and other
bservational parameters [34,38,60,61]. Observational data puts
ight constraints on the form of scalar potentials [45,49], giving
riterion conditions for NMDC models to be viable either as a
riving force of early inflationary phase or of late-time accelera-
ion phase. In Palatini formalism, the NMDC inflation with quartic
ower-law potential is disfavored by CMB data [62–64]. NMDC
nflation succeeds in resulting in quasi-de Sitter expansion with
raceful exits if the field is initially fast-rolling. This happens
ven without scalar potential. On the other hand, at late time
he theory yields w → −1 [33,37,65]. It is interesting that
cceleration is possible in this theory for a power-law potential
(φ) = V0φ

n with n ≤ 2 for sub-Planckian value of κ and of
and the acceleration ends with scale factor oscillation [37,38].
owever when n > 2, the expansion encounters the Big Rip
ingularity. Higgs-like potential and exponential potential have
een investigated. Recent work [66] considers n = 1.5, rea-
onable (i.e. sub-Planckian) initial field value can give sufficient
-folding number for solving the horizon problem with large
alue of coupling and a very small scalar mass. In their works,
he dynamics is of double inflation scenario, i.e. the kinetic-term
riving inflation contributes to some e-folding number followed
y potential driven e-folding number. However shortcomings of
he NMDC inflation turns up when the tensor-to-scalar ratio is
redicted too large. Moreover, for Higgs-like potential or any
ower-law potential with n ≤ 2, there is no graceful exit [67,68].
MDC inflation with power-law potentials is hence disfavored by
MB data in this setting. Most recent report, [69] has ruled out the
MDC inflation with power-law potential using κ < 0 whereas
he sign of κ therein is defined oppositely from ours.

Quantum gravity supports a compelling principle, the holo-
raphic principle proposed by ’t Hooft in 1993 [70]. String theory
escription of the principle was found soon after by Susskind [71].
n this description, conformal field theory on the surface enclos-
ng a volumic region is viewed as hologram of corresponding
tring theory describing physics in the bulk. This is known as
dS/CFT correspondence [72]. According to the principle, surface
rea enclosing a bulk region is related to entropy of the region.
he entropy is known as Bekenstein–Hawking entropy [73–77].
his concept introduces entropy limit of any bulk region. The
ound is due to limited number of quantum states on the surface
f which area can be sub-divided into smallest unit area in Planck
cale, implying limited amount of information that can be con-
ained in the region [78,79]. If information (number of states) of
he bulk region exceeds the entropy bound, the bulk region turns
o be a blackhole. Entropy of a blackhole hence scales with its
urface area, S ∼ A/4G or with square of length scale of a black-
ole, L2bh. Therefore an enclosed bulk matter region cannot have

ntropy exceeding that of blackhole with the same volume size,

2

therwise the bulk matter region becomes a blackhole. In this
icture, a blackhole is viewed as a hologram of the information
t the surface of event horizon [80].
Applying the holographic principle, i.e. the entropy bound, to

osmology, gives a bound value for equation of state w < 1 and
a requirement of infinite size of the universe [81]. As a result, UV
energy scale, ρΛ and IR cosmic length scale, L of vacuum energy
are related via its entropy, i.e. ρΛ ∝ SL−4 [82–85]. The universe
is viewed as a hologram of information on the surface of cosmic
boundary. Relation between the UV energy scale and the IR length
scale hence results that

ρΛ =
3c2

8πGL2
, (1)

suggesting IR cutoff scale L to the vacuum energy (cosmological
constant) density [86]. This idea is known as holographic dark
energy (HDE) model. The parameter c is a constant (0 < c ≤

1) and M2
P ≡ (8πG)−1. When c = 0, the holographic effect

hence vanishes. At this point, the scenario gives hope to solve the
cosmological fine-tuning problem. However, if the length scale is
Hubble horizon, L ∼ H−1, it leads to incompatible value of dark
energy equation of state. That is, instead of w < −1/3, it gives
a dust-like, w ≈ 0 equation of state. This is hold only for the
flat case and there is only ρΛ as a sole density component in the
universe [85]. One might try particle horizon, Rp = a

∫ t
0 a−1dt ′ =

a
∫ a
0 (1/Ha

′2)da′ as a cutoff length scale [81,87] but in the case of
late universe, it does not result in cosmic acceleration, i.e. it gives
w > −1/3 [86]. In order to satisfy the observational bound of
the equation of state for an accelerating universe (w < −1/3),
a next trial is to use future event horizon, Rh = a

∫
∞

t a−1dt ′ =

a
∫

∞

a (1/Ha′2)da′ as IR cutoff length scale instead of the particle
horizon [86,88]. This results in acceptable vacuum energy density
(as dark energy) and it can solve the cosmic coincidence problem
assuming inflationary e-folding number N > 60 [89]. Solving of
coincidence problem is not a surprise because the holographic
energy density depends on cosmological horizon size which in
turn depends on the amount of inflation. With an arbitrary type of
horizon cutoffs, the Casimir energy is found to be proportional to
the horizon size hence advocating the holographic principle [90].
Phantom crossing is allowed by observations however the phan-
tom crossing in holographic universe can violate the second law
of thermodynamics [91]. To evade the problem, one can consider
interaction between HDE and dark matter (DM). This is dubbed
the interacting holographic dark energy (IHDE) model. With the
interaction, the effective equation of state is varying such that
the phantom crossing and tracker solution are possible in a range
of observational parameters [88,92–99]. Despite of the additional
merit that the IHDE with future event horizon cutoff could help
avoiding Big-Rip singularity which exists for c < 1 [100,101],
the model has been either tightly constrained or disfavored by
a number of observations [102–106]. Up to this stage, using
future event horizon as cutoff length scale in the original HDE
model seems to be favored. However, comparing with old high-z
objects, age of the universe predicted is younger than those of
the old high-z objects unless forcing h ≲ 0.56 [107]. IHDE with
non-flat geometry is considered to soften the age problem, even
tough tightly constraint. It is also true that HDE-DM interaction
strength plays a key role in alleviating the cosmic age problem.
Nevertheless, the model needs to involve with too many free
parameters [108].

The original HDE model with future event horizon cutoff is
also plagued with causality problem which is the global property
of the event horizon itself [109]. A few year later, it was argued
that such causality violation (using the event horizon cutoff)
does not exist [110] and soon after, another new HDE model

derived from action principle, is proposed. The new model is
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ree from the causality problem [111]. To solve the age problem
f the original HDE model (without DE-DM interaction), first
ersion of agegraphic holographic dark energy (AHDE) model is
roposed considering cosmic time as length scale cutoff [109].
ince the first version of the model does not allow dark energy to
volve from sub-dominant component at early time to dominant
omponent at late-time, the second AHDE version was proposed
o cure the problem using conformal time, η =

∫
dt/a =

(a2H)−1da as cutoff scale [112,113]. In the same year, a proposal
of another IR cutoff scale motivated by spacetime curvature, the
Ricci scalar [114], L = R ≡ −6

(
Ḣ + 2H2

+ k/a2
)
was made.

t is known as Ricci holographic dark energy (RHDE). Early ob-
ervational constraints as of RHDE model are reported in [115].
ot long after, the AHDE and RHDE models are finally excluded
y observations [116,117]. The other interesting IR cutoff is pro-
osed by Granda and Oliveros (G-O) with cutoff length scale,
= αH2

+ βḢ where α and β are model parameters. The G-O
utoff is clearly a generalized case of the RHDE model, i.e. the

= 0 case of the G-O HDE recovers RHDE model. The G-O
odel is free from causality problem because it depends on H
hich is local quantity and it can also solve the coincidence
roblem [118,119]. Moreover the universe with G-O HDE model is
ossible to accommodate old high-z objects [120]. It is noted that
here are also other proposals of the cutoff scales such as using
igher-order derivative of the Hubble parameter as the cutoff
cale and etc. [121–124]. A model of generalized length scale
utoff is noticed in [125].
In original HDE model, two types of the cutoffs, Ricci scalar

nd G-O cutoffs are disfavored by observations of expansion
ombined with growths of perturbation data while future event
orizon cutoff cannot be rejected by the data [126]. These can be
ured when time-varying c parameter is allowed [127]. Moreover,
ransition from early deceleration to late acceleration is more
onsistent with the model with Hubble scale cutoff with time-
arying c [127]. Recently in Ref. [128], the original HDE model
ith future event horizon cutoff is considered against H(z), CMB,
AO and SN Ia data. Turning point problem of Hubble parameter
s claimed to violate the Null Energy Condition (NEC). However
his is not surprising since the model with c < 1 results in
hantom equation of state. Moreover, the age problem of the
riginal HDE model with future event horizon cutoff has not
et been solved. As the holographic length scale should be a
orizon of causality, the carrier of causality, i.e. light, should never
each the horizon. Cosmic bulk volume in holographic scenario
hould be a volume enclosed by a trapped null surface, mimicking
he same concept of blackhole’s event horizon. In accelerating
niverse, apparent horizon exists as a trapped null surface. Light
oving towards the apparent horizon will never reach the appar-
nt horizon. Therefore, in an accelerating universe, it is sensible
o consider the apparent horizon as holographic cutoff scale. It is
hown that there is connection of the first law of thermodynamics
o the Friedmann equation [129]. Definition of Cai-Kim tempera-
ure, T = 1/(2πRA) comes naturally from the connection and it is
efined with the size of apparent horizon, RA = 1/

√
H2 + k/a2.

Considering energy transfer flux passing through the apparent
horizon with the first law of thermodynamics, one can achieve
the Friedmann equation [129]. For k = 0, the apparent horizon
is just the Hubble length. In this work, we will use the Hubble
length scale as a flat geometry case of the RA cutoff length scale. A
conclusive review on HDE models can be further studied in [130].

On the matter nature of HDE, the HDE could be vacuum
energy or scalar field. This is such as quintom model which has a
mixing of quintessential kinetic term and phantom kinetic term
(see e.g. [131]). Instead of vacuum energy, the quintom field
is taken as a holographic dark energy with phantom-crossing
behavior. The model is known as hessence model [132]. Taking
3

ability in unifying of inflation and phantom-crossing late time
acceleration, a model was invented to accommodate the unifying
picture. This can be achieved either with the dilaton-like self-
coupling of scalar kinetic term or with generalized version of the
holographic cutoffs [133]. The original HDE model when consid-
ered in Brans–Dicke gravity (Jordan frame), using Hubble scale
cutoff and particle horizon cutoff, fails to result in acceleration.
Only when using future event horizon cutoff, acceleration can
be achieved [134]. Another incorporation of scalar-tensor the-
ories to the HDE model was reported in [135]. In Brans–Dicke
gravity, the HDE Hubble scale cutoff is viable only when scalar
potential V (φ) is added to the theory [136,137]. Cosmology of
non-minimal coupling to gravity (NMC) scalar field with original
Hubble scale cutoff has been explored [138–140]. For the case
of NMDC scalar field as HDE, de-Sitter solution has been studied
at late time [141]. In this work, we consider the NMDC field in
a flat universe filled with holographic vacuum energy and dust
matter using Hubble scale cutoff. We study how the holographic
term can alter inflationary parameters and we examine if the
HDE could rescue the NMDC inflation. Moreover we examine if
NMDC field could help original HDE model with Hubble scale
cutoff to achieve the acceleration that does not happen in Brans–
Dicke gravity (as reported in [134]). It is also interested that
variation of gravitational strength could be used to constrain a
range of the NMDC coupling in holographic dark energy model.
In Section 2, we introduce NMDC action and cosmological field
equations. Slow-roll approximation and slow-roll parameters are
derived in Section 3. In Section 4, we give inflationary parameters
and, for three types of scalar potentials, we show parametric plots
of the inflationary allowed range of the NMDC coupling and the
field value. Scalar field phase portraits and acceleration regions
are shown in Section 5. Constraint from variation of gravitational
constant is analyzed in Section 6 and we finally conclude this
work in Section 7.

2. Holographic vacuum energy and NMDC gravity effect

The action of gravitational theory with scalar field non-minimal
derivative coupled to gravity, dust matter and a cosmological
constant is given by

S =

∫
d4x

√
−g

{
R

16πG
−

[εgµν + κGµν]
2

(∇µφ)(∇νφ) − V
}

+ Sm,Λ .

(2)

The coupling constant κ has mass−2 dimension. This action is a
sub-class of Horndeski action as G2 = −(ε/2)gµν(∇µφ)(∇νφ), G3

0, G4 = (16πG)−1, G5 = c5φ = φκ/2, with c5 ≡ κ/2 [56–58].
As a low-energy effective theory, there are modifications to the
Einstein field equation,

Gµν = 8πG
(
T (m)
µν + T (φ)

µν + κΘµν
)
−Λgµν, (3)

with the NMDC and free scalar conservation,

[εgµν + κGµν]∇µ∇νφ = Vφ, (4)

where Vφ ≡ dV (φ)/dφ, T (m)
µν is a stress–energy tensor of dust

matter field and

T (φ)
µν = ε(∇µφ)(∇νφ) −

ε

2
gµν (∇φ)2 − gµνV (φ), (5)

µν = −
1
2
(∇µφ)(∇νφ)R + 2(∇αφ)∇(µ φRαν)

+ (∇αφ)(∇βφ)Rµανβ + (∇µ∇
αφ)(∇ν∇αφ)

− (∇µ∇νφ)□φ −
1
2
(∇φ)2Gµν

+ gµν

[
−

1
(∇α

∇
βφ)(∇α∇βφ) +

1
(□φ)2 − (∇αφ)(∇βφ)Rαβ

]
. (6)
2 2
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mposing Bianchi identity ∇
µGµν = 0 and conservation of matter

ield ∇
µT (m)

µν = 0, hence the NMDC together with the free scalar
ield are conserved,
µ
[T (φ)

µν + κΘµν] = 0. (7)

onsidering that there is a holographic energy scale cutoff for the
acuum energy density ρΛ = Λ/(8πG) = 3c2/(8πGL2), i.e. GR
osmic boundary is imposed as an IR quantum-gravitational mod-
fication of classical GR regime. The holographic effect is not
escribed at classical action level but it is described phenomeno-
ogically in the Friedmann and other field equations. In this situ-
tion, ρΛ is not constant but scaling with cutoff length scale L
hich is allowed to be time-dependent. In spatially flat FLRW
niverse, derived from the Einstein field equation, the Friedmann
quation reads,

2
=

8πG
3

[
1
2
φ̇2(ε − 9κH2) + V (φ) + ρΛ + ρm

]
, (8)

r

2
=

8πGeff

3

[ ε
2
φ̇2

+ V (φ) + ρΛ + ρm

]
, (9)

where ε = ±1 for canonical and phantom case and κ is the
NMDC coupling constant. The scalar potential is V (φ) = V0φ

n and
V = V0 exp (−βφ). Densities ρΛ, ρm are the holographic vacuum
energy density and the dust matter density respectively. The
energy density of holographic vacuum energy and dust matter
are conserved separately as ρ̇Λ + 3H(ρΛ + PΛ) = 0, ρ̇m =

−3Hρm where PΛ is pressure of holographic vacuum energy.
The modified Friedmann equation can be represented in terms
of modification of the kinetic term of the scalar field namely
φ̇2
eff = (φ̇

√
ε − 9κH2)2 (in Eq. (8)) in which the kinetic energy

contribution is enhanced for κ < 0 and is reduced for κ > 0.
The other way of consideration is to view the NMDC effect as a
modification of the gravitational constant G (in Eq. (9)),

Geff(φ̇) ≡
G

1 + 12πGκφ̇2
, (10)

here factorization of Geff does not affect V (φ), ρΛ and ρm. For
κ > 0, Geff is less than the usual G and for κ < 0 the result is
opposite. The Klein–Gordon equation describing conservation of
NMDC scalar field energy density can be viewed as

φ̈ + 3Hφ̇
(
1 −

2κḢ
ε − 3κH2

)
= −

Vφ
ε − 3κH2 , (11)

here the NMDC modification appears in the damping and po-
ential terms. Holographic vacuum energy density does not in-
eract with the NMDC field hence there is no explicit holographic
ffect in the Klein–Gordon equation. However, implicitly holo-
raphic effect contributes via H and Ḣ . We use apparent horizon
utoff L = RA = 1/

√
H2 + k/a2 = H−1 in flat universe. There are

two non-equivalent ways in considering the system:

1. The Friedmann Eq. (8) can be viewed as a description of
a standard flat FLRW universe filled with NMDC field and
other matters. In this case, the holographic energy density
should be defined as

ρΛ ≡
3c2H2

8πG
. (12)

2. The Friedmann Eq. (9) can be viewed as a description
of FLRW universe with time-dependent gravitational cou-
pling, Geff. The universe is filled with canonical (phan-
tom) scalar field and other matters. In this cosmological
consideration, we have

ρΛ ≡
3c2H2

=
3c2

(1 + 12πκGφ̇2)H2 , (13)

8πGeff 8πG

4

as it is not only a function of H but also of φ̇. In this
case, the gravitational constant can be viewed as varying
gravitational strength parameter, Geff(φ̇).

We shall follow the second consideration in this work. Introduc-
ing of the NMDC field hence prevents the problematic dust-like
solution in [85] in which c is set to 1 and it is without scalar field
component. Further factorization, the Friedmann Eq. (9) can be
expressed in form of

H2
=

8π G̃eff

3

[ ε
2
φ̇2

+ V (φ) + ρm

]
, (14)

where the new effective gravitational constant,

G̃eff =
G

(1 − c2)(1 + 12πGκφ̇2)
, (15)

ncludes both NMDC and holographic contributions. This can
e interpreted as there are only dust and a canonical (phan-
om) scalar field in flat FLRW universe with a new modified
ravitational coupling G̃eff. The second field equation is1

Ḣ =
4π G̃eff

A

{
−εφ̇2

+ 9κH2(1− c2)
[
φ̇2

+
Vφ φ̇(2 − 3c2)

9H(ε − 3κH2)(1 − c2)

]
− ρm

}
,

(16)

where A ≡ 1 − 8π G̃effφ̇
2
{[
κε − 9κ2H2(1 − c2)

]
/(ε − 3κH2)

}
.

. Slow-roll approximation

In the slowly rolling regime with negligible dust density, one
an approximate that φ̇2

≪ V hence the approximated Fried-
mann equation is,

H2
≃

V
3M2

P (1 − c2)(1 + 12πGκφ̇2)
. (17)

With sub-Planckian value, i.e. |κ| < 1 (in the unit of MP = 1),
κ2

≪ 1 and with the slow-roll approximation φ̇2
≪ V , hence

the factor A ≈ 1 . In the slow-roll regime, the field acceleration is
negligible, φ̈ ≈ 0, therefore the Klein–Gordon equation is

φ̇ ≃
−Vφ

3H(ε − 3κH2 − 2κḢ)
. (18)

e express slow-roll parameters,

≡ −
Ḣ
H2 , δ ≡ −

φ̈

Hφ̇
, η ≡

ϵ̇

Hϵ
, and ηV ≡ M2

P

⏐⏐⏐⏐VφφV
⏐⏐⏐⏐ .
(19)

From Eq. (17) with Eq. (18), the Ḣ equation is

Ḣ ≃
Vφ φ̇

6M2
PH(1 − c2)(1 + 12πGκφ̇2)

≃
−V 2

φ

6V (ε − 3κH2 − 2κḢ)
.

(20)

ence, the first slow-roll parameter is

≃ ϵV

[
(1 − c2)(1 + 12πGκφ̇2)
ε − 3κH2 − 2κḢ

]
, (21)

here ϵV ≡
(
M2

P/2
) (

Vφ/V
)2. In the slow-rolling regime,

φ̇2
≪ (12πGκ)−1 , (22)

nd |Ḧ| ≪ |HḢ| ≪ |H3
| , (23)

1 The Eq. (16) is obtained by doing time derivative of Eq. (14), using φ̈ of the
Klein–Gordon equation in the result and finally factorizing of Ḣ . This is unlike
the procedure in [141] where P = −ρ is assumed.
Λ Λ
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mplying ϵ ≪ 1 and 3κH2
+ 2κḢ = 3κH2

[1 − (2/3)ϵ] ≃ 3κH2 .
herefore the Friedmann Eq. (17) and Eq. (20) are approximated
o

2
≃

V
3M2

P (1 − c2)
, Ḣ ≃

−V 2
φ

6V
(
ε −

κV
M2

P (1−c2)

) . (24)

ence,

≃ ϵV

[
(1 − c2)
ε − 3κH2

]
≃ ϵV

⎡⎣ (1 − c2)
ε −

κV
M2

P (1−c2)

⎤⎦ . (25)

sing slow-roll approximations with (22), (23) and (24), the
econd and the third slow-roll parameters are

δ ≃ ηV

⎡⎣ (1 − c2)
ε −

κV
M2

P (1−c2)

⎤⎦ − ϵ +
κ
(
V 2
φ/V

)(
ε −

κV
M2

P (1−c2)

)2 , (26)

≃ −2ηV

⎡⎣ (1 − c2)
ε −

κV
M2

P (1−c2)

⎤⎦ + 4ϵ −
κ
(
V 2
φ/V

)(
ε −

κV
M2

P (1−c2)

)2 . (27)

his reduces to standard canonical scalar field in GR without
olographic effect when ε = 1, c = 0 and κ = 0. These are
≃ ηV − ϵ, η ≃ −2ηV + 4ϵ or η ≃ 2ηV − 4δ.

. Inflationary parameters

In general, spectral index ns is related to slow-roll parameters
s ns − 1 ≃ −2ϵ − η = −4ϵ + 2δ. For our model, this is

s − 1 ≃ −4

⎡⎣ (1 − c2)ϵV
ε −

κV
M2

P (1−c2)

⎤⎦ + 2δ −
κ(

ε −
κV

M2
P (1−c2)

)2 V 2
φ

V
,

≃

⎡⎣ (1 − c2)
ε −

κV
M2

P (1−c2)

⎤⎦ (−6ϵV + 2ηV ) +
κ(

ε −
κV

M2
P (1−c2)

)2 V 2
φ

V
.(28)

ensor-to-scalar ratio is

= 16ϵ ≃ 16

⎡⎣ (1 − c2)
ε −

κV
M2

P (1−c2)

⎤⎦ ϵV . (29)

lanck 2018 CMB data [20] gives a constraint, ns = 0.965±0.004
or single field inflationary model. When combining with BICEP-
eck 2015 data on B-mode polarization, the tensor-to-scalar ratio
s given an upper limit of r0.002 < 0.06 at 95% CL. From now
n, we consider canonical scalar field case with ε = 1 and
ositive potential V (φ) > 0. For brevity, we define α(κ, c) ≡ ε −

V/[M2
P (1−c2)]. Using Eq. (29) with the constraint, r0.002 < 0.06,

the denominator α is considered in two cases, i.e. α > 0 and
α < 0. For α > 0, we have κ < εM2

P (1 − c2)/V and the opposite
is α < 0, which gives κ > εM2

P (1 − c2)/V . The e-folding number
for this model is

N =

∫ tf

ti

Hdt ≃

∫ φi

φf

⎡⎣ε −
κV

M2
P (1−c2)

1 − c2

⎤⎦ 1
√
2ϵV

dφ
MP

, (30)

here φf is set to 0 and from now on, we rename φi to φ. We
hall consider these parameters for a specific type of potential.

.1. Inflation with power-law potential

Inflationary potential is chosen to be power-law type, V =

φn with n = 2, 4 and V ≡ λM4−n. In case of n = 2, λ ≡
0 0 P

5

(1/2)m2M−2
P and in case of n = 4, λ ≡ 1/4. Shortcoming of

non-holographic NMDC inflation with power-law potential is re-
stressed recently in [69] using ns and r parameters. Let us see if
the holographic effect given to the NMDC model would make any
difference. The e-folding number in this case is

N = NGR

[
ε

1 − c2
−

2κ
M2

P (1 − c2)2

(
V0φ

n

n + 2

)]
, (31)

where NGR ≡ φ2/(2nM2
P ). The value N ≥ 60 is needed to solve

the horizon problem.
In case of n = 2 with N = 60, Eq. (31) gives

φ2
=

M2
P (1 − c2)
κV0

(
ε ±

√
1 − 480κV0

)
. (32)

For α > 0, we have κ < εM2
P (1 − c2)/(V0φ

n). The upper bound
r < 0.06 results in a bound on κ value,

κ <
εM2

P (1 − c2)
V0φn −

M4
Pn

2(1 − c2)2

V0φn+2

8
0.06

. (33)

In this case, using Eq. (32) in Eq. (33), we found two possibilities,
κ > 0 or κ < 0. For κ > 0, valid range of the NMDC coupling is
0 < κV0 ≤ 1/480 or 0 < κV0 ≤ 0.002. For κ < 0 case, positive
and negative roots of Eq. (32) gives −0.206 < κV0 < −0.019
and −0.019 < κV0 < 0 respectively. In combination, for α > 0
case, the allowed range of κ is approximately −0.206 < κV0 ≤

0.002 . For α < 0, only 0 < εM2
P (1 − c2)/(V0φ

n) < κ is allowed
nd the valid range of the NMDC coupling is 0 < κV0 . When

= 4, Eq. (31) is not simple. We perform parametric plots
f κ and φ in Fig. 1 for these power-law potentials with other
onstraints, e.g. power spectrum index and number of e-foldings
equired to solve the horizon problem (N ≥ 60). As seen in the
igure, ns and r viable regions do not overlap each other. Both
artially overlap with only the N ≥ 60 region.

.2. Inflation with exponential potential

Considering exponential potential, V = V0 exp (−βφ), upper
bound on r results in

<
eβφ

V0

[
εM2

P (1 − c2) −

(
8

0.06

)
β2(1 − c2)2M4

P

]
. (34)

Parametric plot κ versus φ of this case is shown in the bottom
row of Fig. 1. In the exponential potential case, one can also see
that both ns and r viable regions do not overlap but they partially
overlap with region of N ≥ 60.

5. Phase portraits

We investigate the holographic NMDC model as dark energy
in the late universe. With the acceleration condition, ä/a =

Ḣ + H2 > 0, acceleration regions are presented with pink
shade in Fig. 2. Evolution of the system with cosmic time can be
presented as phase portraits. The closed autonomous system of
{φ, φ̇,H, ρm} is

φ̇ ≡ ψ, ρ̇m = −3Hρm,

Ḣ =
4πG

(1 − c2)(1 + 12πGκψ2)A

{
−εψ2

+ 9κH2(1 − c2)
[
ψ2

+
Vφψ(2 − 3c2)

9H(ε − 3κH2)(1 − c2)

]
− ρm

}
,

˙ = −3Hψ −
Vφ

ε − 3κH2

+

24πGκHψ
{

−εψ2
+ 9κH2(1 − c2)

[
ψ2

+
Vφψ(2−3c2)

9H(ε−3κH2)(1−c2)

]
− ρm

}
(ε − 3κH2)(1 − c2)(1 + 12πGκψ2)A

,
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Fig. 1. Parametric plots of κ and φ with the constraints ns = 0.965 ± 0.004, r0.002 < 0.06 [20] and the requirement N ≥ 60. The blue shade represents constraint
from ns (mean and error bar). Allowed region of r with the upper limit of 0.06 is in red. Pink shade represents region with N ≥ 60. Top, middle and bottom rows
are of the case V = (1/2)m2φ2, V = λφ4 and V = V0 exp(−βφ) accordingly. In the top row, the gray shade ranges from 0 to a value less than 1/240 ∼ 0.004. It
is requirement of non-imaginary value of the term

(
ε ±

√
1 − 480κV0

)
in Eq. (32) when assuming positive κ . (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

Fig. 2. Phase portraits, on the plane ρm = 0.1, represent phase paths and acceleration regions (pink shade). Each row is of each type of potentials labeled on the
right of the figures. Each column is of the GR (c = 0 and κ = 0), holographic (c ̸= 0 and κ = 0), NMDC (c = 0 and κ ̸= 0) and mixed NMDC holographic (c ̸= 0 and
κ ̸= 0) cases. Red dot in each phase portrait locates at φ̇ = 1 and φ = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

6
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he autonomous system can be expressed without any needs of
pproximation. The phase portraits are shown in Fig. 2. Using
pproximations φ̈ ≈ 0, φ̇2

≪ V , Ḣ ≪ H2. Late time trajectory
s approximated,

˙ ≃
−Vφ

√
3V

Mp
√

(1−c2)

(
ε −

κV
M2

p (1−c2)

) . (35)

From Fig. 2, Late time behaviors of the system are considered as
the behavior in the present epoch. If the scalar field is canonical
(phantom), κ = 0, holographic term does not affect acceleration
region, i.e. acceleration conditions of the GR and holographic
cases are the same. In third and forth columns of the figure,
NMDC term can affect the acceleration regions. The holographic
term can alter the acceleration regions only in presence of NMDC
field. For all three types of potential, we see qualitatively that
the NMDC effect results in anatomy of the dynamics, i.e. it re-
sults in new late-time attractor trajectories in the acceleration
regions, and that the holographic effect only changes shape of
the acceleration regions and pattern of the phase paths. The
holographic effect does not alter anatomy of the phase portraits.
NMDC dynamical study in [38] has been generalized in [67]
where qualitative analysis of NMDC gravity was reported in de-
tail. In [67], asymptotes of the dynamical system are found and
the corresponding asymptotic Hubble rates are reported therein.
Holographic effect modifies all the asymptotic Hubble rates of
NMDC gravity case via the gravitational constant G and via the
NMDC coupling κ . That is to say, the holographic effect changes
G to G/(1 − c2) and κ to κ(1 − c2). For instance in [67], two
late time asymptotic Hubble rates of the NMDC gravity case are
H =

√
8πGV/3 and H = 1/

√
3κ . The holographic effect modifies

hese to H =
√
8πGV/3(1 − c2) and H = 1/

√
3κ(1 − c2). Since

the modification term, (1 − c2) is only a constant, it does not
hange any anatomy of the NMDC phase portraits but it only
hanges pattern scale of the NMDC phase portraits as seen in
ig. 2.

. Variation of gravitational constant

Variation of gravitational constant can be constrained by sev-
ral observations. For instance, data from gravitational-wave stan-
ard sirens and supernovae provide Ġ/G|t0 ≲ 3 × 10−12 year−1

142] while constraints in the same order of magnitude are
onfirmed by observations of pulsars [143,144], lunar laser rang-
ng [145] and BBN [146,147]. Recent observations such as grav-
tational wave observation of binary neutron stars and local
ravitational acceleration measurement put weaker constraints
n the variation. The binary neutron stars GW170817 provides
bound of −7 × 10−9 year−1 ≲ Ġ/G|t0 ≲ 5 × 10−8 year−1 at
resent [148] while local gravitational acceleration measurement
ives Ġ/G|t0 < 5.61 × 10−10 year−1 [149]. Here, variation of
ravitational constant in NMDC holographic gravity is given by

˙̃Geff

G̃eff
=

Ġeff

Geff
=

−24πGκφ̇φ̈
1 + 12πGκφ̇2

≃
−3κ
M2

P
φ̇φ̈ . (36)

he holographic term 1 − c2 does not affect the variation of
ravitational constant explicitly. However, implicitly there are
olographic effects from c2 terms in Eq. (16) which is used in the
lein–Gordon Eq. (11) to find the φ̈ term in Eq. (36). With the
pper bound Ġeff/Geff|t0 ≲ 3 × 10−12 year−1 given by [142], the

variation (36) reads

10−12 year−1 ≳
−κ

2 φ̇φ̈ . (37)

MP

i

7

Considering late-time trajectory (35), for both power-law and
decreasing exponential potentials, at late time V (φ) ≪ 1, hence
the κV term is negligible (for ε = 1). We can finally solve Eq. (35)
to obtain late-time scalar field exact solutions for each type of
potentials.

6.1. Variation of gravitational constant: Power-law potentials

6.1.1. The case of V = (1/2)m2φ2 potential
For V = (1/2)m2φ2, the late-time approximated solution is

φ(t) ≃ −C (t − t0) + φ0 , (38)

where C ≡
√

[2(1 − c2)/3]mMP. This gives φ̇ ≃ −C and φ̈ ≃ 0. In
order to avoid this null result, instead we approximate the Klein–
Gordon Eq. (11) as,2 φ̈ ≃ −3Hφ̇ − Vφ . The relation (37) is hence

10−12 year−1 ≲
κ

M2
P
C
[
3H0C − m2φ(t0)

]
. (39)

At present, t = t0 and φ(t0) = φ0 ≃ 0. With H0 ≃ 68 km/(s Mpc)
and MP = 1, we can constrain κ for a particular value of c and of
mass, m of the scalar field. The result is presented in Table 1 .

6.1.2. The case of V = λφ4 potential
For V = λφ4, the late-time approximated solution is

φ(t) ≃ φ0 exp

{
−

[
MP

√
(1 − c2)

3λ

]
(t − t0)

}
. (40)

sing this solution in the relation (37), considering that at present,
= t0 and φ(t0) = φ0 ≃ 1, we obtain

0−12 year−1 ≲ κMPφ
2
0

(√
1 − c2

3λ

)3

. (41)

hen setting φ0 = 1,MP = 1 and λ = 1/4, the constraint on κ
s shown in Table 1 .

.2. Variation of gravitational constant: V = V0 exp (−βφ) case

For V = V0 exp (−βφ), the late-time approximated solution is

(t) ≃
2
β

ln

[
β2

2
MP

√
V0(1 − c2)

3
(t − t0) + exp (βφ0/2)

]
. (42)

he relation (37), at present, t = t0 and φ0 = 0, is

0−12 year−1 ≲ κ
β3

6
V0(1 − c2) exp (−βφ) . (43)

etting V0 = 1,MP = 1 and β = 0.5, 1, the constraint on κ is
shown in Table 1 .

7. Conclusions

In this work we consider non-minimal derivative coupling
(NMDC) to gravity term in flat FLRW universe with the holo-
graphic effect from Bekenstein–Hawking entropy. The Hubble
horizon is used as holographic cutoff scale. This cutoff is the
flat geometry case of the apparent horizon cutoff. With the
Hubble horizon cutoff, the holographic vacuum energy density
is ρΛ = 3c2H2/(8πG) where we consider 0 < c < 1 in
this work. The case c = 1 is a separatrix with much distinct

2 Late time is considered as the present time. In the Klein–Gordon Eq. (11)
he terms κH2 and κHḢφ̇ are negligible because φ̇ ≪ 1 and H is very small,
.e. H ≃ 68 km/(s Mpc) ≃ 22 × 10−19 s−1 .
0
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Table 1
Variation of gravitational constant gives constraint on κ for a range of constant c using three types of scalar potential. The constraint is derived from the upper
ound, Ġ/G|t0 ≲ 3 × 10−12 year−1 obtained from gravitational-wave standard sirens and supernovae data [142].

c V = (1/2)m2φ2 V = (1/4)φ4 V = V0 exp (−βφ), β = 1 V = V0 exp (−βφ), β = 0.5

0 0.0072/m2 ≲ κ 2.1 × 10−20 ≲ κ 5.2 × 10−19 ≲ κ 2.5 × 10−18 ≲ κ

0.3 0.0079/m2 ≲ κ 2.4 × 10−20 ≲ κ 5.7 × 10−19 ≲ κ 2.8 × 10−18 ≲ κ

0.5 0.0096/m2 ≲ κ 3.2 × 10−20 ≲ κ 6.9 × 10−19 ≲ κ 3.3 × 10−18 ≲ κ

0.7 0.014/m2 ≲ κ 5.7 × 10−20 ≲ κ 1.0 × 10−18 ≲ κ 4.9 × 10−18 ≲ κ

0.8 0.02/m2 ≲ κ 9.5 × 10−20 ≲ κ 1.4 × 10−18 ≲ κ 7.0 × 10−18 ≲ κ

0.9 0.038/m2 ≲ κ 2.5 × 10−19 ≲ κ 2.7 × 10−18 ≲ κ 1.3 × 10−17 ≲ κ
a
a

c
s

i

D

c
t

D

A

l
s
n

R

dynamical behaviors and it is worth considered in future. The
NMDC effect can be considered as either modification in the
kinetic scalar term or modification in the gravitational constant
term. In the Friedmann Eq. (9), NMDC modification to the grav-
itational constant results in effectively time-varying behavior,
leaving the scalar field kinetic density in canonical (phantom)
form. The NMDC effect is cosmological hence the gravitational
constant in definition of holographic vacuum energy density
should include the NMDC effect, that is ρΛ = 3c2H2/(8πGeff(φ̇))
here Geff(φ̇) ≡ G/(1 + 12πGκφ̇2). Considering 0 < c < 1, in
he Friedmann equation, the holographic effect can be factorized
o include in Geff, making a new effective gravitational constant,
˜ eff ≡ G/[(1 − c2)(1 + 12πGκφ̇2)]. One can see that the NMDC
erm reduces the effective strength of gravitational constant for
> 0 (and the opposite effect for κ < 0) while the holographic
ffect (c2 term) enhances the gravitational strength. Using new

effective gravitational constant G̃eff, matter components in the
riedmann equation are only canonical (phantom) scalar field and
he barotropic matter (as in Eq. (14)).

Next, we derive slow-roll parameters, ϵ ≡ −Ḣ/H2 , ϵV ≡

M2
P/2

) (
Vφ/V

)2
, δ ≡ −φ̈/(Hφ̇) , η ≡ ϵ̇/(Hϵ) and ηV ≡ M2

P
|Vφφ/V | of this model. These recover slow-roll parameters in stan-
dard GR case when ε = 1, c = 0 and κ = 0. The spectral index
ns, the tensor-to-scalar ratio r and expression of e-folding number

are derived. Constraint on single field inflation obtained from
lanck 2018 CMB data [20] gives ns = 0.965 ± 0.004 and with
ICEP-Keck 2015 data on B-mode polarization, r0.002 < 0.06 at

95% CL. We are interested in only non-phantom case with V (φ) >
. Scalar potentials considered are in form of V = V0φ

n with
= 2, 4 and V = V0 exp (−βφ). Amount of e-folding number

s taken to be N ≥ 60 so that the horizon problem is evaded. For
= 2, in case of α(κ, c) ≡ ε− κV/[M2

P (1− c2)] > 0, the allowed
range of κ is approximately, −0.206 < κV0 ≤ 0.002 . and in case
f α < 0, the allowed range is 0 < κV0 . Combined parametric
lots of κ and φ for these potentials with constraints from ns and
upper bound obtained from CMB data [20] reveal that they are
ot overlapping. Only N ≥ 60 region can overlap with either
s allowed region or r allowed region separately. Holographic
ontribution has significant effects in the parametric plots. The
lots do not allow any value of κ to be valid for ns constraint
nd r constraint at the same time. Therefore, for c = 0, our
esult confirms the shortcomings of the non-holographic NMDC
nflation case reported earlier in [45,49,69]. Moreover, for 0 <
< 1, the holographic NMDC inflation is hence not compatible
ith inflation for all potentials considered. We conclude that the
≤ c < 1 cases are ruled out for NMDC inflation.
The model may be considered in the late universe as sources

f dark energy. Phase portraits in Fig. 2 show that NMDC contri-
ution gives complicated phase portraits as well as alters their
cceleration regions. Holographic part can affect the acceleration
egion only in presence of the NMDC field. We see qualitatively
hat holographic part does not affect anatomy of the dynamics as
t only changes shape of the acceleration regions and pattern of
he phase trajectories. On the other hand, the NMDC part changes
8

natomy of the dynamics, i.e. the NMDC gives new late-time
ttractor trajectories locating in acceleration regions.
At late time, variation of gravitational constant can be used to

onstrain our model. Constraint from gravitational-wave standard
irens and supernovae data, Ġ/G|t0 ≲ 3 × 10−12 year−1 [142] is
considered in our work. Variation of gravitational constant in this
model is given by, ˙̃Geff/G̃eff = Ġeff/Geff ≃ −3κφ̇φ̈/M2

P . The holo-
graphic part contributes implicitly via φ̇ and φ̈. The constraint re-
lation is, 10−12 year−1 ≳ −κφ̇φ̈/M2

P . Using slow-roll approxima-
tion, for each type of potential, we find late-time scalar field solu-
tions which are used to derive constraint conditions of the NMDC
coupling, κ of which the value is presented in Table 1. We find
that when the holographic effect, c2 is greater, the lower bound of
κ is lifted up for all types of potential. For instance, 0.0072/m2 ≲
κ for c = 0 and 0.0096/m2 ≲ κ for c = 0.5 for V = (1/2)m2φ2.

In summary, the non-holographic NMDC inflation and the
holographic NMDC inflation with Bekenstein–Hawking entropy
and Hubble scale cutoff with 0 ≤ c < 1 are ruled out for
power-law and decreasing exponential potentials. We suspect
that using apparent horizon cutoff, i.e. the case k ̸= 0 would
not make significant difference in the power spectrum index and
tensor-to-scalar ratio. NMDC effect gives new late-time attractor
trajectories in scalar field phase portraits. At late time, taking role
of dark energy, the coupling κ is viable within positive range
with lower bounds reported here. Kinematic behaviors such as
late expansion of this model and the analysis when c = 1 are
nteresting for future works.
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