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We pursue a detailed analysis of the Schwarzschild geometry around a spherically symmetric, non-
rotating, uncharged source and aim to construct the Schwarzschild metric by considering trigonometric, 
hyperbolic and logarithmic functions of position and time and solving the Einstein field equation. We 
investigate whether the Schwarzschild exterior solution is indeed independent of the choice of the nature 
of the function for the first two metric elements in the general expression for the Schwarzschild metric, 
and is solely dependent upon the centrally symmetric nature of the geometry taken into account.
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1. Introduction

Einstein’s 1915 paper on general theory of relativity revolutionized our understanding of our universe in an extraordinary way by 
providing a geometric and dynamic description of the fabric of spacetime. The absolute beauty of general relativity arises from the fact 
that gravity is nothing but a manifestation of the curvature of spacetime. The presence of matter causes spacetime to curve or bend 
around it and any second object approaching the former one experiences gravitational acceleration due to traversing the curved path 
along spacetime which can be geometrically visualized as falling towards the source along the curvature.

In the absence of any matter or energy, the spacetime is ideally flat, known as the 4D Minkowski spacetime. In this flat spacetime, 
when any matter/energy is introduced, curvature appears as an inevitable consequence, which is perceived as the gravitational field due 
to the source. As such, it can be rightly concluded that gravity is a manifestation of spacetime.

Now, the source of matter/energy can be considered across significant variations, such as spherically symmetric non-rotating static 
sources, dynamic rotating sources, charged rotating sources and so on. The nature of the source drastically influences the effects it has on 
the curvature of spacetime, as, for instance, rotating sources such as massive black holes drag spacetime around them. The impact of the 
source of matter on spacetime can be well understood from their solutions to Einstein’s field equations.

For a spherically symmetric non-rotating source, the Einstein field equation has a solution, which is the metric function gμν for the 
geometry of spacetime outside the centrally symmetric spherical source, known as the Schwarzschild exterior solution to the Einstein 
field equation as elegantly derived by Karl Schwarzschild (1916). Such a source will generate a centrally symmetric gravitational field. 
Czerniawski (2006) in his work has discussed various approaches to deriving the Schwarzschild metric, in excellent detail.

Expression for the spacetime interval with metric signature (+−−−) is given as:

ds2 = gμνdxμdxν (1)

where gμν is metric tensor.
For the Schwarzschild exterior solution, it was considered that the matter distribution is centrally symmetric, static, non-rotating 

source. Since the spacetime is considered static, the components of the metric tensor should remain independent of time. As such the 
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spacetime interval should remain invariant with the time reversal transformation t → −t . So all cross terms involved in the definition 
of the interval goes to zero as drdt �= −drdt, dtdθ �= −dtdθ, dtdφ �= −dtdφ, (Carroll, 2019). Thus, whether in the past or the future of the 
universe, the spacetime interval has to remain invariant, owing to the static, stationary assumption, which would imply that metric of the 
geometry must be independent of time.
Further, the space considered is homogeneous, the interval ds2 should remain invariant under spatial translation. Which means whether 
we move forward or backward along the radial distance, the metric should remain an invariant quantity. The transformation r → −r to 
maintain the interval invariant, leading to the conclusion that the cross terms involving dr must vanish to preserve the homogeneity: (As 
drdθ �= −drdθ ).
On the hyper surface of constant r and t , which results in a two-sphere, the interval along the surface must remain invariant under 
rotational symmetry. To preserve rotational symmetry, the interval has to be independent of cross terms involving θ and φ (As dφdθ �=
−dφdθ ).

With the definition of the spacetime interval (1), in spherical coordinate system, the interval can be expressed as given in Schwarzschild 
(1916); Mughal et al. (2021); Sacks and Ball (1968); Adler et al. (1965):

ds2 = Adt2 − Bdr2 − C(r2dθ2 + r2sin2θdφ2) (2)

where

g00 = A(r), g11 = −B(r), g22 = −r2, g33 = −r2sin2θ

with C = 1, as a hyper surface with constant r and t coordinates is a two sphere (Synge and Schild, 1978; Cheng, 2009; Pössel, 2020).

Thus we have, the invariant interval in case of a centrally symmetric static, stationary source in spherical coordinates:

ds2 = A(r)dt2 − B(r)dr2 − r2dθ2 − r2 sin2 θdφ2 (3)

where A(r) and B(r) are arbitrary functions of r only.

It is obvious that in the general ansatz for a metric in spherical coordinates, two functions emerge out as arbitrary. By considering the 
general expression of an invariant interval in spherical coordinates, we see that the metric components g00 and g11 has to attain certain 
values which are not equal to unity near to the source and become unity at infinite distance from the source which resembles Minkowski 
spacetime.
This shows that metric components merely have to posses a generalized expression as well, which become Minkowskian progressively at 
far away distance where (r → ∞), known as asymptotic flatness (Schutz, 2022), that depends on the distance from the source as one of 
the parameters. Unlike g22 and g33, whose values remain fixed due to the constraint of spherical geometry, which when reduced to a two 
sphere has to have the same metric components as well, g00 and g11 remain arbitrary due to the fact that these metric components vary 
with distance from the source and no other geometrical constraint otherwise is imposed upon them.

Thus, instead of asking what conditions made the two metric components arbitrary, it is intriguing to notice that it is the absence 
of further geometric constraints on the metric components that brought out its arbitrariness. The only geometric constraint imposed on 
them was that they should very with distance from the considered field source. Any function that depends on the radial distance should 
be able to satisfy this condition. The goal of this paper is to investigate this possibility.

Since the Schwarzschild solution of the Einstein field equation is for a static stationary source, the metric must remain independent of 
time. The geometry of the spacetime considered doesn’t evolve with time is another way to look at it. The metric tensor cannot depend 
on φ as well, since the geometry is spherically symmetric.

We have investigated that the metric components are time independent. Alongside our primary objective to prove the arbitrariness of 
the first two metric components, in this paper, we have assumed the arbitrary metric components to be functions of both (r, t). From the 
solution of the field equation itself, we demonstrate how the arbitrary metric components are in fact independent of time.

The vacuum solution can be obtained from the following field equation (Einstein, 1915; Baez and Bunn, 2005; Stephani et al., 2009):

Rμν − 1

2
Rgμν = 0 (4)

where R is the Ricci scalar and Rμν is the Ricci tensor.

Discussion on the Schwarzschild solution, (Cheng, 2009; Narlikar, 2002; Landau, 2013; Eddington, 1923; Chandrasekhar, 1983), in which 
g00 and g11 have been taken as exponential functions of r and t , while authors Kumar and Pathak (2022) consider A and B are algebraic 
functions of r and t .

In this work, our motive is to investigate the idea that these metric functions A = g00 and B = g11 are purely arbitrary and irrespective 
of the form of the function we assume for these metric components, we shall inevitably arrive at the final Schwarzschild solution. Most 
discussions on the Schwarzschild solution assume these functions to be of the exponential form, which through this work, we show that 
is a choice purely made to reduce the mathematical complexity involved and is of no other specific physical significance.

We investigate Schwarzschild solution for three different choice of functions in the metric (3) that appear as A and B . Since these 
functions are arbitrary, we investigate the arbitrariness of these functions.
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2. Schwarzschild exterior solution

2.1. Trigonometric functions of r and t

In the metric (3), let us take:

A = sin(α) (5)

B = sin(β) (6)

where α and β are functions of r and t . The invariant interval transforms into:

ds2 = sinα(r, t)dt2 − sinβ(r, t)dr2 − r2dθ2 − r2 sin2 θdφ2. (7)

Metric becomes:

gμν =

⎛
⎜⎜⎝

sinα(r, t) 0 0 0
0 − sin β(r, t) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎠ (8)

g00 = sinα g11 = − sin β g22 = −r2 g33 = −r2 sin2 θ

g00 = 1

sinα
g11 = − 1

sinβ
g22 = − 1

r2
g33 = − 1

r2 sin2 θ
.

2.1.1. Calculation of Christoffel symbols and Ricci tensor
Christoffel symbols can be obtained from:

�k
i j = 1

2
gkm

(
∂ gim

∂x j
+ ∂ g jm

∂xi
− ∂ gij

∂xm

)
. (9)

Non-zero component of Christoffel symbols are given below, where a dot over a symbol indicates differentiation with respect to t and a 
prime over a symbol represents differentiation with respect to r.

�0
00 = 1

2
α̇ cot(α) �0

11 = 1

2
β̇ csc(α) cos(β) �0

10 = 1

2
α′ cot(α) = �0

01

�1
11 = 1

2
β ′ cot(β) �1

00 = 1

2
α′ cos(α) csc(β) �1

10 = 1

2
β̇ cot(β) = �1

01

�1
22 = −r csc(β) �1

33 = −r sin2(θ) csc(β) �2
33 = − sin(θ) cos(θ)

�3
23 = cot(θ) �2

12 = 1

r
�3

13 = 1

r
.

Components of the Ricci tensor can be obtained from the relation:

Rik = ∂�l
ik

∂xl
− ∂�l

il

∂xk
+ �l

ik�
m
lm − �m

il �
l
km. (10)

Thus, non-zero components of the Ricci tensor are given as:

R00 = α̇β̇ cot(α) cot(β)

4
− α′β ′ cos(α) cot(β) csc(β)

4
− 3α′2 csc(α) csc(β)

8

+ α′2 cos(2α) csc(α) csc(β)

8
+ α′ cos(α) csc(β)

r
+ α′′ cos(α) csc(β)

2

− β̇2 cot2(β)

4
− β̈ cot(β)

2
+ β̇2 csc2(β)

2

(11)

R11 = α′β ′ cot(α) cot(β)

4
− α̇β̇ cot(α) csc(α) cos(β)

4
− α′2 cot2(α)

4

− α′′ cot(α)

2
+ α′2 csc2(α)

2
+ β̈ csc(α) cos(β)

2

− β̇2 csc(α) sin(β)

2
− β̇2 csc(α) cos(β) cot(β)

4
+ β ′ cot(β)

r

(12)

R22 = − rα′ cot(α) csc(β)

2
+ rβ ′ cot(β) csc(β)

2
− csc(β) + 1 (13)

R33 = sin2(θ)

[
− rα′ cot(α) csc(β) + rβ ′ cot(β) csc(β) − csc(β) + 1

]
(14)
2 2
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R01 = R10 = β̇ cot(β)

r
. (15)

Ricci Scalar (scalar curvature) R is given by:

R = gim Rim. (16)

Ricci Scalar:

R = −3α′2 csc2(α) csc(β)

4
+ α′2 cos(2α) csc2(α) csc(β)

4
+ 2α′ cot(α) csc(β)

r
2 csc(β)

r2
− α′β ′ cot(α) cot(β) csc(β)

2
+ α̇β̇ cot(α) csc(α) cot(β)

2

+ α′′ cot(α) csc(β) + β̈2 csc(α) csc2(β)

2
+ β̇2 csc(α)

2

− β̈ csc(α) cot(β) − 2β ′ cot(β) csc(β)

r
− 2

r2
.

(17)

Vacuum solutions of the Einstein field equation are:

sin(α)
[
1 − csc(β) + rβ ′ cot(β) csc(β)

]
r2 = 0 (18)

rα′ cot(α) − sin(β) + 1

r2
= 0 (19)

β̇ cot(β)

r
= 0 (20)

− 3r2α′2 csc2(α) csc(β)

8
+ r2α′′ cot(α) csc(β)

2
+ r2β̇2 csc(α) csc2(β)

4

− r2α′β ′ cot(α) cot(β) csc(β)

4
+ r2α̇β̇ cot(α) csc(α) cot(β)

4

+ r2β̇2 csc(α)

4
− r2β̈ csc(α) cot(β)

2
+ rα′ cot(α) csc(β)

2
r2α′2 cos(2α) csc2(α) csc(β)

8
− rβ ′ cot(β) csc(β)

2
= 0

(21)

sin2 θ

[
− r2α′β ′ cot(α) cot(β) csc(β)

4
+ r2α̇β̇ cot(α) csc(α) cot(β)

4

−3r2α′2 csc2(α) csc(β)

8
+ r2α′′ cot(α) csc(β)

2
+ r2β̇2 csc(α) csc2(β)

4

+ r2β̇2 csc(α)

4
− r2β̈ csc(α) cot(β)

2
+ rα′ cot(α) csc(β)

2
r2α′2 cos(2α) csc2(α) csc(β)

8
− rβ ′ cot(β) csc(β)

2

]
= 0.

(22)

From (20) we can perceive that since cot(β) cannot be zero, β̇ = 0, implying that β is equal to some constant with respect to time. 
This shows that β is in fact independent of the time. Since we shall use the expression for β to calculate α, α shall also turn out to be 
independent of the time coordinate. (21) and (22) are equivalent and so, we use (18) and (19) to calculate the exterior solution.

From (18), we get:

sinβ =
(

1 + C

r

)−1

(23)

where C is a constant. Using (23) and (19), we obtain:

sinα =
(

1 + C

r

)
. (24)

Substituting the values of sin α and sin β values in (7) we obtain:

ds2 =
(

1 + C

r

)
dt2 −

(
1 + C

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2 (25)

which is our required Schwarzschild exterior solution.
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2.2. Hyperbolic functions of r and t

Similarly, now considering the constant A as and B as hyperbolic functions, let:

A = sinh(α) (26)

B = sinh(β) (27)

where, α and β are functions of radial distance r and time t .
Invariant interval can be written as:

ds2 = sinhα(r, t)dt2 − sinh β(r, t)dr2 − r2dθ2 − r2 sin2 θdφ2. (28)

Metric becomes:

gμν =

⎛
⎜⎜⎝

sinhα(r, t) 0 0 0
0 − sinh β(r, t) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎠ (29)

g00 = sinhα g11 = − sinh β g22 = −r2 g33 = −r2 sin2 θ

g00 = 1

sinhα
g11 = −1

sinh β
g22 = −1

r2
g33 = −1

r2 sin2 θ
.

2.2.1. Calculation of Christoffel symbols and Ricci tensor
From (9), non-zero components of the Christoffel symbols are:

�0
00 = 1

2
α̇ coth(α) �0

11 = 1

2
β̇csch(α) cosh(β) �0

10 = 1

2
α′ coth(α) = �0

01

�1
11 = 1

2
β ′ coth(β) �1

00 = 1

2
α′ cosh(α)csch(β) �1

10 = 1

2
β̇ coth(β) = �1

01

�1
22 = −rcsch(β) �1

33 = −r sin2(θ)csch(β) �2
33 = − sin(θ) cos(θ)

�3
23 = cot(θ) �2

12 = 1

r
�3

13 = 1

r
.

Using (10) non-zero components of Ricci tensor are:

R00 = α̇β̇ coth(α) coth(β)

4
− α′β ′ cosh(α) coth(β)csch(β)

4
− 3α′2csch(α)csch(β)

8

+ α′2 cosh(2α)csch(α)csch(β)

8
+ α′ cosh(α)csch(β)

r
+ α′′ cosh(α)csch(β)

2

− β̇2 coth2(β)

4
− β̈ coth(β)

2
+ β̇2csch2(β)

2

(30)

R11 =α′β ′ coth(α) coth(β)

4
− α̇β̇ coth(α)csch(α) cosh(β)

4
− α′′ coth(α)

2

+ 3α′2csch2(α)

8
− α′2 cosh(2α)csch2(α)

8
− 3β̇2csch(α)csch(β)

8

+ β̇2csch(α) cosh(2β)csch(β)

8
+ β̈csch(α) sinh(2β)csch(β)

4
+ β ′ coth(β)

r

(31)

R22 = − rα′ coth(α)csch(β)

2
+ rβ ′ coth(β)csch(β)

2
− csch(β) − 1 (32)

R33 = sinh2(θ)

[
− rα′ coth(α)csch(β)

2
+ rβ ′ coth(β)csch(β)

2
− csch(β) − 1

]
(33)

R01 = R10 = β̇ coth(β)

r
. (34)

Scalar curvature R based on (16):

R =2csch(β)

r2
− α′β ′ coth(α) coth(β)csch(β)

2
+ α̇β̇ coth(α)csch(α) coth(β)

2

− 3α′2csch2(α)csch(β)

4
+ α′2 cosh(2α)csch2(α)csch(β)

4
+ 2α′ coth(α)csch(β)

r

− β̈csch(α) coth(β) − β̇2csch(α) coth2(β)

4
− 2β ′ coth(β)csch(β)

r

+ α′′ coth(α)csch(β) + 3β̇2csch(α)csch2(β) − β̇2csch(α) + 2
2
.

(35)
4 4 r
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Vacuum solution of Einstein field equation:

sinh(α)
[
1 − csch(β) + rβ ′ coth(β)csch(β)

]
r2

= 0 (36)

− 3r2α′2csch2(α)csch(β)

8
+ r2α′′ coth(α)csch(β)

2
+ r2α′2 cosh(2α)csch2(α)csch(β)

8

− r2α′β ′ coth(α) coth(β)csch(β)

4
− 3r2β̇2csch(α)csch2(β)

8
+ rα′ coth(α)csch(β)

2

+ r2β̇2csch(α) cosh(2β)csch2(β)

8
+ r2β̈csch(α) sinh(2β)csch2(β)

4

− r2α̇β̇ coth(α)csch(α) coth(β)

4
− rβ ′ coth(β)csch(β)

2
= 0

(37)

sin2 θ

[
−3r2α′2csch2(α)csch(β)

8
+ r2α′′ coth(α)csch(β)

2
+ r2α′2 cosh(2α)csch2(α)csch(β)

8

− r2α′β ′ coth(α) coth(β)csch(β)

4
− 3r2β̇2csch(α)csch2(β)

8
+ rα′ coth(α)csch(β)

2

+ r2β̇2csch(α) cosh(2β)csch2(β)

8
+ r2β̈csch(α) sinh(2β)csch2(β)

4

− r2α̇β̇ coth(α)csch(α) coth(β)

4
− rβ ′ coth(β)csch(β)

2

]
= 0

(38)

rα′ coth(α) − sinh(β) + 1

r2
= 0 (39)

β̇ coth(β)

r
= 0. (40)

Hence from (40), as coth β �= 0; β̇ = 0 i.e. β is independent of time.

Ex(36) gives:

sinh β =
(

1 + C

r

)−1

(41)

where C is a constant. Using (41) in (39) we have:

sinhα =
(

1 + C

r

)
. (42)

Ex(28) with (42) and (41) is:

ds2 =
(

1 + C

r

)
dt2 −

(
1 + C

r

)−1

dr2 − r2(dθ2 + sin2 θdφ2). (43)

2.3. Logarithmic functions of r and t

Considering

A = lnα (44)

B = lnβ (45)

where α and β are functions of both t and r.
Invariant interval is:

ds2 = ln[α(r, t)]dt2 − ln[β(r, t)]dr2 − r2dθ2 − r2 sin2(θ)dφ2. (46)

Metric:

gμν =

⎛
⎜⎜⎝

lnα(r, t) 0 0 0
0 − lnβ(r, t) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞
⎟⎟⎠ (47)

g00 = lnα g11 = − ln β g22 = −r2 g33 = −r2 sin2 θ

g00 = 1
g11 = − 1

g22 = − 1
2

g33 = − 1
2 2

.

lnα lnβ r r sin θ
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2.3.1. Calculation of Christoffel symbols and Ricci tensor
Using (9), listing non-zero components of the Christoffel Symbols:

�0
00 = α̇

2α lnα
�0

01 = �0
10 = α′

2α lnα
�0

11 = β̇

2β lnα

�1
00 = α′

2α lnβ
�1

01 = �1
10 = β̇

2β lnβ
�1

11 = β ′

2β lnβ

�1
22 = − r

lnβ
�1

33 = − r sin2(θ)

lnβ

�2
12 = �2

21 = 1

r
�2

33 = − sin(θ) cos(θ)

�3
13 = �3

31 = 1

r
�3

23 = �3
32 = cot(θ)

From (10), the non-zero Ricci tensor components:

R00 = β ′α′

4βα ln2 β
− β̇α̇

4βα ln β lnα
− β̇2

4β2 ln2 β
− β̇2

2β2 lnβ

+ β̈

2β ln β
+ α′2

2α2 lnβ
+ α′2

4α2 lnβ lnα
− α′′

2α ln β
− α′

rα ln β

(48)

R01 = R10 = − β̇

rβ lnβ
(49)

R11 = β̇α̇

4βα ln2 α
− β ′α′

4βα ln β lnα
+ β̇2

2β2 lnα
+ β̇2

4β2 lnβ lnα

− β̈

2β lnα
− β ′

rβ lnβ
− α′2

4α2 ln2 α
+ α′′

2α lnα
− α′2

2α2 lnα

(50)

R22 = − rβ ′

2β ln2 β
+ rα′

2α lnβ lnα
+ 1

ln β
− 1 (51)

R33 = − rβ ′ sin2 θ

2β ln2 β
+ rα′ sin2 θ

2α lnβ lnα
+ sin2 θ

ln β
− sin2 θ. (52)

Obtaining the Ricci scalar using (16),

R = 2

r2 lnβ
+ β̇α̇

2βα ln β ln2 α
− β ′α′

2βα ln2 β lnα
+ β̇2

2β2 ln2 β lnα

+ β̇2

β2 lnβ lnα
− β̈

β lnβ lnα
− 2β ′

rβ ln2 β
− α′2

2α2 lnβ ln2 α

+ 2α′

rα lnβ lnα
+ α′′

α lnβ lnα
− α′2

α2 ln β lnα
− 2

r2
.

(53)

Finally, solving the Einstein field equation (4) we get the following equations:

− 1

r2 ln β
+ 1

r2
+ β ′

rβ ln2 β
= 0 (54)

β̇

rβ lnβ
= 0 (55)

− ln β

r2
+ α′

rα lnα
+ 1

r2
= 0 (56)

r2β̇α̇

4βα lnβ ln2 α
− r2β ′α′

4βα ln2 β lnα
+ r2β̇2

4β2 ln2 β lnα
+ r2β̇2

2β2 lnβ lnα

− r2β̈

2β lnβ lnα
− r2α′2

4α2 lnβ ln2 α
+ r2α′′

2α lnβ lnα

− r2α′2

2α2 lnβ lnα
− rβ ′

2
+ rα′

2α lnβ lnα
= 0

(57)
2β ln β
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sin2 θ

[
r2β̇α̇

4βα lnβ ln2 α
− r2β ′α′

4βα ln2 β lnα
+ r2β̇2

4β2 ln2 β lnα
+ r2β̇2

2β2 lnβ lnα

− r2β̈

2β lnβ lnα
− r2α′2

4α2 lnβ ln2 α
+ r2α′′

2α lnβ lnα

− r2α′2

2α2 lnβ lnα
− rβ ′

2β ln2 β
+ rα′

2α ln β lnα

]
= 0.

(58)

Equation (55) gives the time independence of β and from equation (54) we obtain:

ln β =
(

1 + C

r

)−1

. (59)

Using (59) and (56) we get:

lnα =
(

1 + C

r

)
(60)

where C is a constant of integration.
Substituting the values of lnα and ln β in (46) we obtain:

ds2 =
(

1 + C

r

)
dt2 −

(
1 + C

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2 (61)

which is our required solution.
When r → ∞, then A and B → 1 in (2) (Kassner, 2017) i.e., the spacetime becomes Minkowskian.

The constant C, which can be regarded as a function of the mass of the object, is determined based on the consideration that at large 
distances from the object, as the spacetime flattens out, the gravitational field becomes weak in response to the reduction in curvature. 

At such distances from the object, Newton’s law must hold true. In terms of the components of the metric tensor, g00 =
(

1 + 2	(x)

c2

)
(Adler et al., 1965), so that at large distances, gravitational potential 	(x) tends to zero making the component of the metric tensor g00=1, 

approaching the Newtonian limit. This requires that the gravitational potential has it’s Newtonian limit 	(x) = − GM

r
(Visser, 2005) where 

M is the total mass of the gravitating object and G is the universal gravitational constant. Hence constant in (25) is C = −2GM

c2 , where 
c is the speed of light. It can be obtained (Cheng, 2009; Landau, 2013; Kassner, 2017; Hartle, 2003) that the Schwarzschild radius is 

rs = 2GM

c2
.

The geometry beyond this Schwarzschild limit can be considered by removing the coordinate singularities through coordinate trans-
formations (Cheng, 2009; Gsponer, 2004; Blau, 2011; Thorne et al., 2017). Heinicke and Hehl have given a detailed tabular for-
mat of Schwarzschild metric under various coordinate transformation including the characteristic properties each transformation con-
veys (Heinicke and Hehl, 2015).

Thus, with C = −2GM

c2 , and taking the convention c = 1, the Schwarzschild metric (61) is:

ds2 =
(

1 − 2GM

r

)
dt2 −

(
1 − 2GM

r

)−1

dr2 − r2dθ2 − r2 sin2 θdφ2. (62)

The Schwarzschild metric is derived with the condition that the spacetime is static, implying that it admits a time-like killing vector, 
due to translational symmetry within the limit r > 2M as beyond the Schwarzschild radius the time-like coordinate becomes space-like 
and the Killing vector will remain hypersurface orthogonal (Carroll, 2019; Mukherjee and Roy, 2021; Herrera and Witten, 2018)

K1 = �et . (63)

Besides the time-like Killing vector which can be directly read of from the expression of the Schwarzschild metric (61), Schwarzschild 
geometry being spherically symmetric admits three more space-like Killing vector fields that arise as a consequence of invariance for 
rotation about the three spacial coordinate axes (Carroll, 2019; Mukherjee and Roy, 2021; Herrera and Witten, 2018).

K2 = �eφ (64)

K3 = cosφ �eθ − cot θ sinφ �eφ (65)

K4 = − sin φ �eθ − cot θ cosφ �eφ. (66)

K2 can also be easily read of from the expression (61) as it is evident that none of the metric components are functions of φ.
In fact, these are the only Killing vector fields for the Schwarzschild spacetime (Carroll, 2019). It indeed reveals the fact that no 

matter what form of function we assign initially for the arbitrary metric components A(r) and B(r), the Killing vector fields for the 
Schwarzschild spacetime remain the same. This means that the symmetry of the spacetime remains conserved no matter the choice of 
function we assume for the arbitrary metric components, hence providing with further confirmation of the arbitrary nature of the two 
metric components. The preservation of symmetry under the various choice of the function for the two arbitrary metric elements indicates 
that as long as the metric components remain a function of the radial coordinate only, the Schwarzschild metric is purely independent on 
the choice of function for A(r) and B(r).
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3. Conclusion

From (2) the general expression for Schwarzschild metric leaves the two metric components as arbitrary functions of the radial coordi-
nate. In this paper, our motive was to validate the fact that these metric components g00 and g11 are in fact truly arbitrary in the choice 
of function. The detailed analysis we followed validates our assumption that the Schwarzschild metric is truly independent of the choice 
of the function for the arbitrary metric elements A(r) and B(r). In most popular literature, these functions are initially assumed as expo-
nential functions of r and t and are then proceeded to obtain the metric expression. In our work, our motive was to demonstrate the fact 
that this particular choice of exponential function for the first two metric components is in fact a choice aimed at achieving mathematical 
simplicity and is not based on any physical significance. We validate this by considering three other choice of functions for the first two 
metric components, namely trigonometric, hyperbolic and logarithmic form, and indeed obtain the final Schwarzschild metric:

ds2 =
(

1 − rs

r

)
dt2 −

(
1 − rs

r

)−1
dr2 − r2(dθ2 + sin2 θdφ2). (67)

The choice of the functions we made here are random, aimed to prove that as long as the choice of functions are r dependent, no 
matter the form of function chosen for the two metric elements, we shall arrive at the final Schwarzschild metric. It is noteworthy that 
the Killing symmetries remain unchanged on the choice of the form of the functions, which indicates a lack of physical significance of the 
choice of function on the symmetry of spacetime, implying that the choice of function as exponential functions of r and t in the usual 
approach to obtain the Schwarzschild metric is aimed at mathematical simplification.

The exponential form of the function is sometimes justified by stating that it leaves the metric elements strictly positive. The fact that 
we are able to derive the Schwarzschild metric with other choice of functions such as trigonometric, hyperbolic and logarithmic, which 
can assume non-positive values reveals that the strict positive nature of the two metric elements assumed elsewhere is not a necessary 
requirement to obtain the Schwarzschild solution.
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