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A B S T R A C T   

The mutating SARS-CoV-2 necessitates gauging the role of airborne particulate matter in the COVID-19 outbreak 
for designing area-specific regulation modalities based on the environmental state-of-affair. To scheme the 
protocols, the hotspots of air pollutants such as PM2.5, PM10, NH3, NO, NO2, SO2, and and environmental factors 
including relative humidity (RH), and temperature, along with COVID-19 cases and mortality from January 2020 
till December 2020 from 29 different ground monitoring stations spanning Delhi, are mapped. Spearman cor-
relation coefficients show a positive relationship between SARS-COV-2 with particulate matter (PM2.5 with r >
0.36 and PM10 with r > 0.31 and p-value <0⋅001). Besides, SARS-COV-2 transmission showed a substantial 
correlation with NH3 (r = 0.41), NO2 (r = 0.36), and NO (r = 0.35) with a p-value <0.001, which is highly 
indicative of their role in SARS-CoV-2 transmission. These outcomes are associated with the source of PM and its 
constituent trace elements to understand their overtone with COVID-19. This strongly validates temporal and 
spatial variation in COVID-19 dependence on air pollutants as well as on environmental factors. Besides, the 
bottlenecks of missing latent data, monotonous dependence of variables, and the role air pollutants with sec-
ondary environmental variables are discussed. The analysis set the foundation for strategizing regional-based 
modalities considering environmental variables (i.e., pollutant concentration, relative humidity, temperature) 
as well as urban and transportation planning for efficient control and handling of future public health 
emergencies.   

1. Introduction 

The rapidity and unpredicted outbreak of Severe Acute Respiratory 

Syndrome (SARS) and coronavirus disease (SARS-CoV-2) have stressed 
the importance of combating and regulating modalities (WHO, 2020; 
Yamamoto et al., 2020). Since the appearance of COVID-19 in 2019, a 
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large number of research studies have been conducted on the disease 
(Domingo, 2021; Taha et al., 2023; Cherusseri et al., 2022; Maurya et al., 
2022; Royal et al., 2021). The severity of COVID-19 has challenged the 
state-of-the-art healthcare services and raised the need to understand 
the origin, diagnosis and pathogenesis of causative virus (Chaudhary 
et al., 2021, 2023a; Cherusseri et al., 2022; Chugh et al., 2022; Park 
et al., 2023; Singh et al., 2022; Upasham et al., 2022). Moreover, the 
origin of SARS-CoV-2 is still a matter of debate. While most studies point 
to a zoonotic origin, with bats and pangolins being possible intermediate 
hosts, the intermediate source species has not yet been confirmed 
(Domingo, 2021). Some researchers have also suggested an unnatural 
origin, but their conclusions are yet to be experimentally evaluated 
(Domingo, 2021). As a consequence, many areas worldwide are highly 
impacted by the covid infections as well as deaths and are therefore 
identified as SARS-CoV-2 hotspots (Desai, 2020; World Health Organi-
zation, 2020). Furthermore, the varying character of SARS-CoV-2 virus 
with the accessibility of various transmission pathways and its interac-
tion with environmental features resulted in the emergence of various 
variants; all of which significantly challenged prevention and rapid 
control (Chaudhary et al., 2021; Gage et al., 2021; Paliwal et al., 2020; 
Sadique et al., 2021; Chaudhary et al., 2022; Taha et al., 2023) (see 
Table 1). 

Toxicological analysis have revealed the role of air contamination (i. 
e. due to anthropogenic sources, traffic-related air pollution and internal 
combustion engines) in causing airborne hyper-responsiveness and 
contagion, which results in the severity of respiratory and cardiovas-
cular diseases (Manisalidis et al., 2020; Schraufnagel et al., 2019; Suzuki 
et al., 2020; World Health Organization, 2019). For instance, the pres-
ence of air contaminants and the persuasive and infectious nature of 
COVID-19 virus have been related to chronic diseases such as cardio-
pulmonary failures (van Doremalen et al., 2020). Furthermore, various 
research investigations further revealed that inhaling air pollutants 
further reduces the immune reaction and facilitates virus growth, sur-
vival, and replication (Ali and Islam, 2020a; Karan et al., 2020). 

In many research investigations, the role of numerous air contami-
nants, such as particulate matter (PM), nitrogen dioxide (NO2), 
ammonia (NH3), sulfur dioxide (SO2) and ozone (O3), has been evalu-
ated using epidemiological, toxicological, and regression analyses (Ali 
and Islam, 2020a; Becchetti et al., 2021; Nor et al., 2021a; Suzuki et al., 
2020; Chaudhary et al., 2023a, 2023b). Since PM contributes to 7⋅6% of 
global mortality(Schraufnagel et al., 2019), it has been anticipated as 
the most prominent factor for aggravating COVID-19 severity and aba-
ting the prognosis of the disease. The PMs can be classified as fine 
particles (PM10 are particulate matter with size ≤10 μm) and ultrafine 
particles (PM2⋅5 are particulate matter with size ≤2⋅5 μm) with primary 
and secondary origins (Bo et al., 2017; Das et al., 2015; Manisalidis 
et al., 2020). Therefore, particulate matter and air pollutants are 
anticipated as a reinforce to the transmission of SARS-CoV-2, its pene-
tration, and its severity in humans. 

Many scientific reports documented by U.S. Environmental Protec-
tion Agency (EPA), have studied and evaluated the role of particulate 
matter in various adverse human health issues (Brook et al., 2010; US 
EPA, 2019; Wu et al., 2020). Setti et al. (2020) reported primary analysis 
of the existence of relation of airborne particulate matter in particular 
atmospheric conditions with COVID-19 virus, which anticipated a po-
tential application as an indicator of COVID-19 recurrence. The 
SARS-CoV-2 particles bound to airborne PM (Nor et al., 2021a) were 

likely to be more profound in the alveolar and tracheobronchial parts of 
the vulnerable host subject (Ali and Islam, 2020a; Nor et al., 2021a). 
Furthermore, PM indirectly weakens the host’s immune response, which 
increases the host’s susceptibility towards COVID-19 and worsens its 
severity (Yang, et al, 2020; Zhao et al., 2013). PM causes SARS-CoV-2 to 
bind with vulnerable cells, thus causing overexpression of ACE-2 re-
ceptors(Borro et al., 2020). 

The pathogenicity of PM is crucially evaluated in terms of its con-
stituents and chemical composition, especially trace elements. Various 
trace elements like cadmium (Cd), arsenic (As), lead (Pb), chromium 
(Cr), and mercury (Hg) characterize a very small trace of the total PM 
mass(Das et al., 2015; Dominici et al., 2015; Sharma and Mandal, 2017). 
However, these are enough to induce adverse human health issues such 
as lung damage, cardiopulmonary conditions and low birth weight. 
Numerous studies have revealed the role of inhalable airborne trace 
elements relatable to COVID-19 symptoms such as lung and cardiopul-
monary morbidity, failure and mortality (Das et al., 2015; Dominici 
et al., 2015; Mo et al., 2021; Zhao et al., 2013; Markandan et al., 2022). 
In all the studies, it has been consistently highlighted those airborne 
trace elements present in the PM result in decreased immune efficacy 
and chronic inflammation among COVID-19 patients. 

Moreover, humans residing in polluted sites are additionally prone to 
SARS-COV2, where most hotspots of COVID-19 happen to be the most 
polluted megacities (Desai, 2020). For instance, Delhi, the capital of 
India, has been listed in the world’s top ten polluted cities consecutively 
for last three years and was devastated majorly due to COVID-19 
(Greenpeace y IQAir, 2020). Primary sources of PM in Delhi’s atmo-
sphere are vehicular emissions, industries, construction, episodic agri-
cultural burning and waste burning. (Dhaka et al., 2020; Saraswati et al., 
2019; Sharma and Mandal, 2017). 

Previous studies examined the relation between COVID-19 spread 
and air quality index (AQI) in different megacities(Ali and Islam, 2020a; 
Dutta and Jinsart, 2021; Karan et al., 2020; S. Kumar, 2020; Tello-Leal 
and Macías-Hernández, 2021a; Chaudhary et al., 2022). Yet, according 
to our survey, no analysis directly evaluates the impact of PM and its 
secondary causatives (NH3, NO, NO2, SO2, RH) on growth and intensity 
of SARS-COV2 infection in Delhi. Besides, AQI-COVID-19 correlation 
studies primarily lack addressing missing data issues, analysing the 
significance of the correlation, catering to the monotonous correlation 
amongst variables, and were multivariate analyses (Anand et al., 2021; 
Bontempi, 2021; Milicevic et al., 2021; Villeneuve and Goldberg, 2020). 
Owing to these limitations, the current analysis examines the potential 
role of airborne trace elements in terms of PM and its secondary sources 
(NH3, NO, NO2, SO2, RH) in COVID-19 spread and mortality by utilizing 
the Spearmen correlation with significance evaluation. Moreover, 
Spearmen rank correlation has been employed to investigate the relation 
between COVID-19 with air pollutants and environmental factors during 
the first COVID-19 wave in Delhi. The study aims to establish a 
groundwork for designing area-based approaches (depending on envi-
ronmental factors and airborne trace elements, PM, RH, and NH3) to 
regulate COVID-19 intensity and future infectious threats. 

2. Methodology & analysis 

2.1. Study area 

Delhi, which is located at 28⋅61◦ N 77⋅23◦ E, is the capital city and a 

Table 1 
Statistical data on environmental parameters, deaths, and cases reported in Delhi.   

PM2⋅5 PM10 NH3 NO2 NO SO2 Temperature Humidity Deaths Cases 

Mean 93⋅35 180⋅59 35⋅81 38⋅51 26⋅91 13⋅15 30⋅79 31⋅75 34⋅39 2041⋅81 
std 83⋅48 123⋅09 10⋅39 19⋅53 30⋅66 3⋅23 6⋅55 15⋅51 37⋅95 1945⋅05 
min 11⋅85 29⋅66 20⋅48 14⋅35 3⋅91 7⋅42 14⋅22 7⋅73 0⋅00 0⋅00 
max 523⋅31 729⋅31 72⋅47 96⋅95 145⋅50 23⋅82 42⋅70 75⋅38 437⋅00 8593⋅00  
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union territory of India, was selected for analysis in the present study. It 
is one of the most populated (population: 15 million; population density: 
11297 people/km (Commissioner and Road, 2011)) metropolitan capi-
tals, maintains the 2nd position as the world’s top megacities 
(UN/DESA, 2018). Investigations have shown that biomass and auto-
mobile emissions significantly contribute PM to the Delhi environment. 
(Saraswati et al., 2019). In contrast, the agricultural sector has been 
identified as a significant contributor to airborne ammonia (Chaudhary 
et al., 2021; Sharma et al., 2014). 

2.2. Data Collection and Processing 

The concentrations of the various air pollutants such as PM2.5, 
PM10, NH3, SO2, NO2, and NO recorded from 29 different air moni-
toring stations spanned across Delhi, established under “Central Pollution 
Control Board” (CPCB), under the “Ministry of Environment, Forests and 
Climate Change, Government of India”. Similarly, day-to-day COVID-19 
cases and casualties during the analysis duration were obtained World 
Health Organization, WHO (HTTPS://covid19.who.int/) data from 
January 1, 2020 to December 31, 2020. 

2.3. Processing of missing data 

One of the major concerns while performing air quality analysis is 
catering for the missing observations (Hadeed, O’Rourke, Burgess, 
Harris and Canales, 2020; Khan et al., 2021a). For instance, air quality 
data can be influenced by power failure, filter replacement, mechanical 
deterioration, undetectable contaminant concentration, and/or crashing 
of computer systems (Khan et al., 2021b). Therefore, it is essential to 
address the issue of missing data effectively since it is pervasive and 
affects data analysis significantly. Previous reports on air quality have 
categorized missing data into three cases (i) Missing at random (MAR), 
(ii) Missing completely at random (MCAR), and (iii) Not missing at 
random (NMAR) (Khan et al., 2021b; Little and Rubin, 2014). 

In the current study, the MAR benchmark was 7%. To address the 
issue associated with missing data, we used the "last observation carried 
forward (LOCF)" method, where missing data is superseded by a prior 
observation assuming the variable remains unaffected during the period 
(Hamer and Simpson, 2009). 

In the present study, the first section emphasizes a statistical and 
comparative investigation of air pollutants from 29 sites across Delhi 
from January to December 2020, focusing on the air quality index (AQI) 
and its temporal variation. The Delhi AQI index was estimated as the 
mean AQI across these 29 locations. Second part of the study focuses on 
COVID-19 infectivity, mortality, movement restriction, and lockdown 
on the AQI of various locations in Delhi. The duration from January to 
November 2020 was divided into three stages (i) Pre-lockdown stage: 
1st January- March 23, 2020, (ii) Lockdown stage: 24th March- May 31, 
2020, (iii) Unlock stage: 1st June- November 30, 2020. 

2.4. Methodology: Spearmen correlation coefficient 

Spearman’s rank correlation coefficient, a nonparametric measure of 
rank correlation which shows the statistical dependency among two 
variables, was used in the present study (Sedgwick, 2014). However, 
previous studies have employed the Pearson correlation coefficient for 
similar analysis. The significant difference between the two analyses lies 
in the fact that the Pearson correlation coefficient estimates only the 
linear dependence among the variables. (Hauke and Kossowski, 2011). 
However, Spearman’s rank correlation measures a monotonic depen-
dence between two variables. If the Spearman coefficient is higher than 
the Pearson then it indicates that the relationship between variables is 
not linear but monotonic. As the data used for the current study is not 
normally distributed, we expect the Spearman coefficient to produce 
results with greater significance. 

Suppose, we have variables (Ai, Bi) transformed to rank variables (R 

(Ai), R(Bi)), then we can define the Spearman rank coefficient (ρs) be-
tween these variables as: 

ρs =
cov(R(A),R(B))
[
σR(A)σR(A)

]

where Cov(R(A), R(B)) estimates the covariance between R(A) and R(B) 
σR(A) and σR(B) defines the standard deviations of R(A) and R(B) If we 
have a sample such that all the ranks are different, then the Spearman 
rank coefficient (ρs) can be simplified as: 

ρs = 1 −
6
∑

d2
i

n(n2 − 1)

with di = R(Ai) – R(Bi) as the deviation between each observation of R 
(A) and R(B). The correlation coefficient is bounded between − 1 as anti- 
correlation to +1 indicating a full positive correlation. 

2.5. Significance test 

The significance of statistical correlation for all variables was 
ascertained using the probability value (p-value) analysis(Dahiru, 2011; 
Shih and Aisner, 2021), which estimates the degree of random relation 
among the variables while lies in ranges between 0 and 1. For example, a 
p-value of 1 implies a complete chance that the relationship between 
variables is random. At the same time, a "null hypothesis" portrays no 
significant correlation between variables, indicating a random rela-
tionship. Therefore, a near-zero P-value indicates that the null hypoth-
esis can be discarded and there exists a substantial pure correlation 
among the variables. While the p-value advances towards zero, the 
chances that the estimated results are due to a sampling error decrease. 

3. Results and discussion 

3.1. Analysis to map hotspots of environmental risk factors 

Fig. 1 shows a pie-chart illustrating the area-wise distribution of 
pollutants (i.e., NH3, NO, NO2, SO2, PM2.5, and PM10) monitored across 
various regional or sub-station levels where it is seen that the distribu-
tion of pollutants varies significantly across the monitored region. For 
instance, the sectors in a darker shade of red and a darker shade of blue 
from the pie chart represent the highest and lowest percentage of pol-
lutants recorded in the monitored sub-station. Fig. 1 also shows the 
pollutant contribution from all sub-station locations arranged in the 
form of ranking. For example, the average pollutant contribution of 
atmospheric PM2.5 was highest in Jahangirpuri (122.8 μg/cm3) and 
lowest in Shadipur (70.2 μg/cm3), respectively. In contrast, the 
pollutant contribution of atmospheric PM10 was highest in Bawana (227 
μg/cm3) and lowest in Sri Aurobindo Marg (117.4 μg/cm3), respectively. 
On the other hand, the pollutant contribution of NO and NO2 was 
highest in Pusa (64.1 μg/cm3) and Jahangirpuri (68.1 μg/cm3), 
respectively, while the contribution of SO2 was highest in Vivek Vihar 
(24.9 μg/cm3). Rohini (63.3 μg/cm3) and Mandir Marg (18.1 μg/cm3) 
reported the highest and the lowest NH3 pollutant contribution among 
all other sub-station locations. These findings ascertain that the 
pollutant distribution (and the type of pollutant) varies geographically 
across the investigated sub-station locations. Based on the findings 
mentioned above, it can be concluded that:  

a) The three highest contributors of atmospheric PM2.5 (Jahangirpuri, 
Bawana, and Rohini) are industrial areas of Delhi surrounded by 
agricultural regions, contributing towards the release of particles 
such as sulfate and nitrate particles, elemental and organic carbon, 
and soil (Goyal et al., 2021; Taneja et al., 2020). PM2.5 is is mainly 
originated from chemical reactions in the fuel ignition and atmo-
sphere. Therefore, power plants, industrial facilities, and agricultural 
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burning in these locations can be considered major sources of at-
mospheric PM2.5.  

b) The three highest contributors of PM10 (Jahangirpuri, Bawana, and 
Mundka) are the industrial areas of Delhi. A study by Gargava et al. 
highlighted that construction and paved road dust are major 
contributing factors to PM10 (Gargava et al., 2014). Investigation of 
major PM10 components such as sulfates, nitrates, and toxic trace 
metals (i.e., Pb, Ni, V, As, and Hg) revealed that while paved road 
dust is the principal source of PM10, power plants (coal and natural 
gas-fired) are largest contributing sources of primary NO3, Ni and V 
whereas industrial boilers (heavy-duty diesel fuel) contribute 
majorly to SO2−

4 , V and Ni. Besides, other studies have reported that 
the prevalence of PM10 can be associated with vehicular emissions or 
suspended aerosols from agricultural practices (Nigam et al., 2021).  

c) Among all Delhi sub-stations, Rohini, Patparganj, and Jahangirpuri 
are top contributors to airborne ammonia. Primary sources of at-
mospheric NH3 are from agricultural activities such as animal hus-
bandry, nitrogenous fertilizers, manure management, and/or the 
different soil and water management practices (Adams et al., 2001). 
Other studies have reported that biomass combustion may produce 
an unprecedented amount of nitrogen element, which appears to be 
the second-largest contributor of atmospheric NH3 after agriculture 
(Kuttippurath et al., 2020). Since agricultural fields surround Rohini, 
Patparganj, and Jahangirpuri regions, it is plausible to claim that the 
high contribution of atmospheric NH3 can be attributed to the 
abovementioned factors.  

d) The burning of fuels in vehicles at high temperatures causes nitrogen 
and oxygen from the air to produce nitrogen monoxide. In contrast, 

Fig. 1. Pie chart illustrating the area-wise percentage distribution of pollutants from all sub-station across Delhi.  
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when the released NO from the vehicle exhaust system combines 
with oxygen from the air, nitrogen dioxide (NO2) will be formed 
(Arshad et al., 2020). As such, it is plausible to claim that NO2 is 
mainly emitted from anthropogenic emissions such as fuel combus-
tion in traffic and industrial sectors. In the present study, regions 
such as Jahangirpuri, Shadipur, Pusa, and Anand Vihar contributed 
mainly to NO and NO2, indicating the high vehicle dependency in 
these regions compared to other locations.  

e) Vivek Vihar, JLN Stadium, and Wazirpur contributed mainly to SO2 
pollutants compared to other Delhi locations. The largest source of 
SO2 in the atmosphere is burning fossil fuels in power plants or in 
vehicles and heavy equipment that burn fuel with high sulfur con-
tent. Therefore, the high SO2 pollutants in the aforementioned re-
gions are justifiable since they are active industrial sites (D. N. Kumar 
and Priyanka, 2021; Srivastava et al., 2020). 

3.2. Correlation analysis 

Fig. 2 shows the Spearman correlation among different variables 
over the pre-lockdown, lockdown, and unlock phase. From Fig. 2b, it can 
be seen that during the pre-lockdown phase the confirmed, COVID- 
19cases shows a high positive correlation with temperature (0.41, p- 
value ≈ 10− 2) and SO2 (0.54, p-value ≈ 10− 2) with a small positive 
correlation with PM2⋅5 (0.19), PM10 (0.10), NO (0.13), NO2 (0.22) and 
NH3 (0.19) and a negative correlation with relative humidity (− 0.28). 
For the observation it can inferred that the environmental factor 
specially temperature and SO2 may contributes towards the rise of, 
COVID-19cases. Besides, we observe that the number of COVID-19 
deaths shows a negative correlation with temperature (− 0.29) and 
SO2 (− 0.26) during the pre-lockdown phase, showing these factors 
although contributes towards the increase in number of covid cases but 
has little impact on, COVID-19deaths. During the pre-lockdown phase, 
we observe a positive correlation of humidity with the number of, 
COVID-19deaths. The magnitude of correlation of humidity with, 

Fig. 2. Comparison of Correlation heatmap and dendrogram between variables during the pre-lockdown, lockdown, and the unlock phase along with results of 
full period. 
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COVID-19cases and deaths increases during the lockdown and unlock 
phase. Previous studies have reported on the role of relative humidity in 
the transmission of COVID-19 (Božič and Kanduč, 2021a; Mecenas et al., 
2020; Salom et al., 2021; Tello-Leal and Macías-Hernández, 2021a). 
Secondary pollutants such as ammonia alkalize the atmosphere, which 

favours the transmission of COVID-19 by supporting the virus to fuse 
with the plasma membrane of target cells, all of which indicate the 
correlation between pollutant concentration and the impact during the 
pre-lockdown phase of COVID-19 in Delhi. 

Temperature plays an important role in COVID-19cases and 

Fig. 3. Correlation heat map and dendrogram between variables for every month during the period of analysis.  
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mortality during the pre-lockdown and lockdown period. We observe a 
moderately high correlation of temperature with, COVID-19cases (0.41, 
p-value ≈ 10− 2) during the pre-lockdown phase (January 2020 to March 
2020). This is the winter period in Delhi, with a relatively low temper-
ature. The correlation of temperature with, COVID-19 cases (0.74 p- 
value ≈10− 10) and deaths (0.65 p-value ≈10− 8) becomes highly positive 
during the lockdown phase. Delhi observes a moderately higher tem-
perature during this time. Lastly, correlation of temperature with, 
COVID-19 cases during the unlock phase becomes highly negative 
(− 0.44, p-value ≈10− 10). Fig. 2c shows that during the lockdown 
period, COVID-19 mortality shows significant positive correlation with 
PM10 (0.29, p-value ≈ 10− 2) and NO2 (0.22, p-value ≈ 10− 2). However, 
relative humidity and NH3 show a negative correlation with the number 
of deaths during the lockdown period with correlation of − 0.48 (p-value 
≈10− 5) and − 0.20 (p-value ≈ 10− 1) and respectively. These negative 
correlations, in particular of relative humidity, ascertains the hypothesis 
made by previous researchers that low relative humidity leads to a 
higher transmission and penetration rate of the viruses, which subse-
quently weakens human immunity (Božič and Kanduč, 2021b; Tell-
o-Leal and Macías-Hernández, 2021b). On the other hand, virus droplets 
bound to PM2.5 are highly favourable for deeper penetration in the 
alveolar range of susceptible individuals, leading to higher respiratory 
failures (Ali and Islam, 2020b; Nor et al., 2021b). As such, the sub-
stantial correlation among the pollutants and COVID-19 is justifiable. 

Fig. 2d shows the correlation analysis during an un-lock period 
where a small significant correlation was observed between COVID-19 
cases and mortality with PM, NH3, NO2, NO, SO2, and relative humid-
ity. The correlation between COVID-19 mortality with PM2.5, PM10, 
NH3, NO2, SO2, and relative humidity are 0.46, 0.37, 0.36, 0.21, 0.29 
and − 0.58 respectively. However, the correlation is moderate and 
cannot be considered random since p-values for these correlations were 
less than 0⋅001. We also observe a high positive correlation still exists 
between COVID-19 cases with PM2.5, PM10, NH3, NO2, NO, SO2 with 
correlation of 0.52, 0.54, 0.38, 0.43, 0.37, 0.44 (with p-value ≈10− 10), 
which indicates that COVID-19 transmission is dependent on the PM and 
the pollutant concentration of Delhi environment. 

3.3. Hierarchical clustering 

We construct metric distances based on the Spearman correlation 
matrix. The metric distance between two variables (i and j) is defined as 
Dij =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 − Cij)

√
where Cij is the correlation matrix. The elements of the 

distance matrix lie between 0 and 2. This distance matrix is used to 
create the dendrogram Fig. 2, using an average linkage hierarchical 
clustering algorithm. A dendrogram is a tree-like structure that shows 
the hierarchical clustering between the variables. It is a branching dia-
gram showing the similarity and dissimilarity between the variables, 
where the variables in the same branch are similar, implying a cluster. 
We divide the investigation into two parts: In the first part, we analyse 
the effect of the restriction imposed by the government. In this case, the 
full period is divided into three parts: pre-lockdown, lockdown and 
unlock period. Dendrogram plots, along with the correlation heat maps 
for three periods and the full period, are shown in Fig. 2. The second part 
takes the monthly data and compares the monthly dendrograms in 
Fig. 3. It is found that the dendrogram of the full period Fig. 2a shows 
that there are three clusters based on the properties of the variable. 
These clusters depend on the variable class as the most prominent 
cluster is the pollutant cluster, including all pollutants (such as PM2.5, 
PM10, SO2, NO2, NO, and NH3). The second cluster is the weather var-
iables (Temperature and Humidity), and the third cluster is the COVID 
variables (Cases and Deaths). It can be observed that:  

• There is a change in cluster structure during the three time-periods.  
• The Pre-lock down, the pollutants are still in one cluster except for 

SO2, with temperature and COVID cases forming the second cluster. 

The deaths and humidity are in the third cluster. Indicating, COVID 
deaths are closely linked with the relative humidity, whereas as there 
is a relation between the rise in COVID cases and temperature.  

• In the lockdown phase, COVID-19 cases and mortality are in the 
same cluster as temperature, implying that temperature significantly 
correlates with COVID-19 cases and mortality, possibly making the 
infection more contagious.  

• During the unlock phase, the cluster structure is restored as the full 
period, and clusters are again based on the variable class (pollutant, 
weather or COVID). 

In the second part of the hierarchical clustering, we perform monthly 
analysis of the system, and we observe that: 

• During March (Fig. 3a), death and cases are closely related to tem-
perature, and to some extent with humidity Therefore, the system 
can be divided into two clusters: the first cluster contains all pol-
lutants, whereas the second cluster contains the weather and COVID 
variables.  

• In April (Fig. 3b), when the first COVID wave hit Delhi, we got three 
clusters, where the COVID cases and humidity were in one cluster, 
deaths and temperature were in the second, and the pollutant in the 
third. It can be concluded that temperature affects deaths, whereas 
humidity significantly affects COVID cases. 

• There is a change in the cluster structure in May which is the lock-
down period (Fig. 3c), where the COVID-19 cases and mortality are 
in a separate cluster from pollutants. The separation of COVID-19 
cases and deaths as an independent cluster can be attributed to the 
strong lockdown restrictions imposed on the public, where they were 
constrained to remain at their home, thus terminating the chain of 
transmission.  

• During June (Fig. 3d), lockdown was lifted partially, we observe that 
role plays a vital role in COVID deaths and cases. During this time 
Delhi, observe a high temperature period.  

• During July (Fig. 3e), we observed that some of the pollutants, such 
as SO2, PM2.5, and PM10 are closest to the COVID variables. However, 
after July, the pollutant as well as the COVID variable again sepa-
rates from each other.  

• From August till December (except the month of October), we see 
that the COVID variables are closely related to the weather condi-
tions and forms a cluster with each other. Temperature is considered 
closely related with COVID variables.  

• During the month of October, we observe that the COVID cases as 
well as COVID related deaths are clustered with the pollutant. During 
this period, Delhi suffers a high pollutant due to the excess of stubble 
burring around the around the farmland in Delhi. Stubble burning 
which is a seasonal problem contributes about 20%–50% of the Delhi 
air pollution. 

3.4. Correlation threshold network 

The threshold method uses the threshold to construct the threshold 
network from the Spearman correlation matrix. The variables in the 
system are represented as nodes, whereas the correlation represents the 
connection among variables. When correlation coefficient exceeds a 
given threshold value, we connect the variables by a link. In our con-
struction, the variables in the system (pollutants, weather and COVID) 
define the set of Vertices/Nodes (V = {PM2.5, PM10, SO2, NO, NO2, NH3, 
temperature, humidity, COVID cases, and COVID deaths}). The links (E) 
in the network G(V, E) are based on the threshold values (0 ≤ θ ≤ 1), 
where we add a link between the nodes, say i and j , if Cij > θ. Mathe-
matically the edges E are defined as 

E=

{
eij = 1, if i ∕= j and

⃒
⃒Cij

⃒
⃒ ≥ θ

eij = 0, otherwise 
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Different threshold values generated a different network, with the 
same nodes but a different set of connections between the nodes. With 
the increase in the threshold, the network becomes more and more 
sparse, and links with strength less than the threshold are dropped. 

We constructed the network using four different thresholds [θ = (0.1, 
0.3, 0.5, 0.7)] for three time-periods: pre-lockdown, lockdown, and 
unlock. The comparison between the three periods at different thresh-
olds is shown in Fig. 4. It can be observed that: 

• At all thresholds and time periods, pollutants show a high connec-
tivity level, with PM2.5 and PM10 playing the central role.  

• At low thresholds, COVID deaths and cases show a relation with the 
pollutants, especially PM2.5, PM10, SO2, humidity, and temperature.  

• In the pre-lockdown period, at intermediate thresholds (0.3, 0.5), 
COVID-19 mortality seems isolated and unrelated to any other var-
iables. The same is observed for the unlock period at the 0.5 
threshold. However, during the lockdown period, COVID-19 mor-
tality shows a good dependence on the temperature and humidity. 

Fig. 4. Network at different threshold during pre-lockdown, lockdown and unlock phase.  
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• COVID-19 cases always show a relation with the temperature and 
humidity at low and intermediate thresholds. This relation disap-
pears at higher thresholds (θ ≥ 0.7). However, COVID-19 cases also 
show a relation with SO2 at the low and intermediate threshold for 
the pre-lockdown period. The reason for such a relationship is not yet 
known.  

• We can see only two components for most of the threshold range for 
all three periods. The most significant component is made up of 
pollutants, and the other component is made up of COVID-19 and 
weather variables. This observation shows that climatic conditions 
significantly impact the spread and lethality of the SARS-CoV-2. 

4. Conclusions  

• In conclusion, the present study employed statistical correlation 
analysis to establish connections between various environmental 
variables, including pollutant concentration, relative humidity, and 
secondary contaminants, with the transmission, reported cases, and 
mortality during the COVID-19 wave. The study yielded several key 
findings, which are summarized as follows:The study successfully 
identified hotspots of airborne pollutants in different locations in 
Delhi, India, by mapping ambient pollutant concentrations. Major 
construction work, vehicle exhaust emissions, and industrial activ-
ities were associated with primary pollutant hotspots, while 
ammonia hotspots were linked to agricultural activities. Addition-
ally, the hotspots of particulate matter (PM) were found to be related 
to the constituent trace elements.  

• During the pre-lockdown period, there was a moderate positive 
correlation (>0.4, p-value ≈ 10− 2) between the intensity of COVID- 
19 and temperature, which increased during the lockdown phase, 
demonstrating a very high correlation (correlation value of 0.74) 
with higher statistical significance (p-value ≈ 10− 10). Relative hu-
midity showed a small negative correlation (− 0.28) with COVID 
cases and a positive correlation (0.22) with COVID deaths during the 
pre-lockdown phase. However, during the lockdown phase, the 
correlation between humidity and COVID cases and deaths increased 
in magnitude (− 0.31 and − 0.48, respectively). This suggests that 
relative humidity may play a potential role in SARS-CoV-2 trans-
mission, possibly through its impact on immunity, receptor cell 
binding, and aerosol formation for secondary transmission.  

• . Significant correlations (r = 0.29 and 0.22) were found between 
COVID-19 cases and mortality with PM10 and NO2, respectively, 
during the unlock phase, highlighting PM as a significant risk factor 
that exacerbates the severity of the COVID-19 outbreak. The trace 
elements comprising PM were also identified as potential contribu-
tors to increased COVID-19 morbidity and mortality. 

• The study’s demonstrated the effectiveness of lockdown and move-
ment restrictions in reducing ambient pollutant concentrations in 
Delhi. This reduction was attributed to decreased emissions from 
transportation, industrial sectors, and agricultural activities during 
the lockdown period.  

• Hierarchical clustering and threshold network analyses were used to 
explore the relationships between variables, dividing them into three 
categories: COVID variables, weather variables, and pollutants. A 
close association was observed between weather and COVID vari-
ables, which was visually evident through the Dendrogram and 
threshold network. The significance of these relationships was 
quantified by the network’s threshold, with links present at higher 
thresholds indicating higher significance  

• The study revealed the significant contribution of pollutants to 
COVID cases and deaths, particularly during the high air pollution 
season in Delhi, such as the period of stubble burning in October.  

• Nevertheless, the resulting economic crisis and the degrading mental 
health of confined people are the foremost associated concerns. 

Although the decline in air pollutants was observed in one of the 

most highly polluted cities globally, it is worth noting that the liveli-
hoods of many people were affected significantly due to the lockdown 
measures in response to the COVID-19 pandemic. Nevertheless, the 
study outcomes highlight the importance of strategizing techniques to 
reduce vehicular, industrial, and agricultural emissions to improve air 
quality levels and sustain better public health globally. Moreover, it is 
the first attempt to understand airborne trace element role as particulate 
matter constituents in COVID-19 morbidity and mortality. The study 
opens new prospects for understanding the spatial and temporal varia-
tion of COVID-19 severity and mutations in SARS-CoV-2 in interaction 
with airborne trace elements as particulate matter constituents. 
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Božič, A., Kanduč, M., 2021a. Relative humidity in droplet and airborne transmission of 
disease. J. Biol. Phys. 47 (1), 1–29. https://doi.org/10.1007/s10867-020-09562-5. 

P. Bhadola et al.                                                                                                                                                                                                                                

https://doi.org/10.1029/2000JD900512
https://doi.org/10.1029/2000JD900512
https://doi.org/10.3389/fpubh.2020.580057
https://doi.org/10.3389/fpubh.2020.580057
https://doi.org/10.3389/fpubh.2020.580057
https://doi.org/10.3389/fpubh.2020.580057
https://doi.org/10.1016/j.envres.2021.111126
https://doi.org/10.1016/j.envres.2021.111126
http://refhub.elsevier.com/S0013-9351(23)01450-0/sref6
http://refhub.elsevier.com/S0013-9351(23)01450-0/sref6
http://refhub.elsevier.com/S0013-9351(23)01450-0/sref6
http://refhub.elsevier.com/S0013-9351(23)01450-0/sref6
https://doi.org/10.1016/j.envres.2020.110556
https://doi.org/10.3390/atmos8080136
https://doi.org/10.3390/atmos8080136
https://doi.org/10.1016/j.envres.2020.110476
https://doi.org/10.1016/j.envres.2020.110476
https://doi.org/10.3390/ijerph17155573
https://doi.org/10.3390/ijerph17155573
https://doi.org/10.1007/s10867-020-09562-5


Environmental Research 236 (2023) 116646

10
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