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In this work, we introduce a class of extended minimal theories of massive gravity, without requiring
a priori that the theory should admit the same homogeneous and isotropic cosmological solutions as the de
Rham-Gabadadze-Tolley massive gravity. The theory is constructed as to have only two degrees of freedom
in the gravity sector. In order to perform this step we first introduce a precursor theory endowed with a
general graviton mass term, to which, at the level of the Hamiltonian, we add two extra constraints as to
remove the unwanted degrees of freedom, which otherwise would typically lead to ghosts and/or
instabilities. On analyzing the number of independent constraints and the properties of tensor mode
perturbations, we see that the gravitational waves are the only propagating gravitational degrees of freedom
which do acquire a nontrivial mass, as expected. In order to understand how the effective gravitational force
works for this theory we then investigate cosmological scalar perturbations in the presence of a pressureless
fluid. We then restrict the whole class of models by imposing the following conditions at all times: (1) it is
possible to define an effective gravitational constant, Geff ; (2) the value Geff=GN is always finite but not
always equal to unity (as to allow some nontrivial modifications of gravity, besides the massive tensorial
modes); and (3) the square of mass of the graviton is always positive. These constraints automatically make
also the ISW-effect contributions finite at all times. Finally we focus on a simple subclass of such theories,
and show they already can give a rich and interesting phenomenology.

DOI: 10.1103/PhysRevD.106.084050

I. INTRODUCTION

In these last years, we have witnessed a boom for the
research in gravity both from theoretical and experimental
sides. In particular, the discovery of gravitational waves has
paved the ground for a long research path which will lead to
a deeper understanding of several new aspects of gravity
[1]. On one side this will affect largely astrophysics, in
particular the research aimed to understand the dynamics of
the final states of stars in strong gravity regimes. On
another end, a large sample from the detected gravitational
waves seems to be coming from the merger of two black
holes: the values for the masses of the black holes involved
in these phenomena seem to be pointing either to nontrivial
astrophysical sources or even to the existence of primordial
black holes, which could be forming at least part of the dark
matter content [2].
From an observational point of view, having a larger

sample of neutron star mergers will also give us a link to
cosmology, since the sources of the signals could be located
in a far away galaxy, leading to a propagation of the
gravitational waves over a cosmological distance [3]. In
particular, this branch of the gravitational wave science

should help us understand the nature of the so-called H0

tension [4,5]. As a matter of fact, the high redshift CMB
data including Planck [6] as well as Atacama Cosmology
Telescope (ACT) [7], and the late time data, SH0ES [8] do
not agree with each other in the context of ΛCDM, the “de
facto” standard model of gravity. This tension could point
either to new physics or to some unexpected and nontrivial
systematic errors in the data, and the gravitational waves
discoveries should help in confirming or ruling out this last
hypothesis.
If this situation is not already surprising in cosmology,

still another observable in the data related to the growth of
structure, the amplitude of the fluctuation S8 during matter
domination up to now, seems to be again showing poor
agreement between early time data (Planck [6]) and late-
time large scale structures [9,10], once more in the context
of the ΛCDMmodel. These two tensions open up room for
exploring models of the Universe beyond the ΛCDM, for
example by modifying gravity at large scales [11–13]. See
[5] for a review of possible solutions to the Hubble tension.
There have been several attempts to try to reconcile data

and theory at the cost of introducing new degrees of freedom,
which could change the dynamics of the cosmological
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background and matter perturbation needed to solve the
above mentioned puzzling tensions [12–16]. What is sur-
prising though is that at local scales (e.g. solar system scales)
there is no trace of such additional degrees of freedomwhich
would be necessary to fix the cosmological issues [17]. One
then needs to address how to hide existing new degrees of
freedom in environments with energy scales much higher
than the cosmological ones [18–20].
However, a more minimal approach, and possibly a

simpler one, is to give a nonzero mass to the graviton [21].
If the mass, μ, of such a mode is small enough, i.e.
comparable to the size of today’s Hubble expansion rate
(μ ≃ 10−33 eV), then for the typical energy scales present in
astrophysical environments, the graviton would typically
be largely ultrarelativistic avoiding in this way the con-
straints on μ coming from the propagation of gravitational
waves, which is μ < 10−23 eV [22]. Even though the
graviton mass is negligible at very short scales (i.e. solar
system scales), on cosmological scales things could be
different. In fact, the theory leading to a nonzero graviton
mass could be becoming sensibly different from ΛCDM at
late times, when H ≃ μ. This theory could also be respon-
sible for an apparent modified gravity behavior in cosmol-
ogy which could be affecting both the background and
cosmological perturbations, being able in this way to
address both the above mentioned tensions [23,24].
Is this an interesting idea or nothing but a theorist-wild-

dream scenario? In fact, the question of a nonzero mass for
the graviton was posed a long time ago and first partially
addressed by Fierz and Pauli [21]. Partially, because they
studied a theory of massive gravity only in a perturbative
regime, i.e. without knowing the theory in full, in any
nonperturbative regime. Only quite recently, a theory of
massive gravity which is totally consistent with a theoretical
point of view was introduced, which is dubbed as
de Rham-Gabadadze-Tolley (dRGT) theory [25,26]. This
breakthrough led to an exploration of the phenomenology for
such a theory, but itwas realized that thismodel, at least in the
simplest approach, could not have well-defined cosmologi-
cal behavior [27,28]. By a beyond-linear-perturbation analy-
sis around a homogeneous and isotropic background, it was
found that at least one (out of five) of the graviton degrees of
freedom would be a (light) ghost and as such would make
dRGT lose its ability to make predictions [27].
Although this resultmight lookdisappointing, this negative

result has led to several other possibilities. One of them
consisted of introducing terms which break Lorentz invari-
ance, in order to remove unwanted (unstable) degrees of
freedom. Along these lines of research, a model called
minimal theory of massive gravity (MTMG) was introduced
as to resolve the issueof dRGTon a cosmological background
[29]. In particular MTMG, by construction, removes three
(out of five) graviton degrees of freedom in a nonlinear way,
leaving tensormodes as only propagating degrees of freedom
on any background. The theory has been proved to be

interesting and led to a nontrivial phenomenology discussed
even recently in the literature [23,24,30]. Along the same
lines, MTMG was extended as to have a scalar field
in the gravity sector (in addition to the massive graviton)
[31–33], and even to a minimal theory of bigravity (MTBG)
[34]. It should be noted that in MTMG by construction we
remove all gravity modes but the transverse-traceless gravi-
tational waves. This was necessary as in Lorentz invariant
massive gravity theories, although Vainshtein mechanism
works at screening the extra modes on short scales, still
homogeneous and isotropic manifolds, at least in dRGT,
possess a nonlinear light ghost, which makes standard
cosmology pathological [27].
Besides the requirement for the minimal number of

propagating degrees of freedom, MTMG has been con-
structed so as to admit the same homogeneous and isotropic
cosmological solutions as in dRGT, for which there are two
branches of solutions: the self-accelerating branch and the
normal branch. In the self-accelerating branch the graviton
mass term acts as an effective cosmological constant that
can accelerate the expansion of the universe [35] while
the linear perturbations behave exactly the same as the
standard ΛCDM, except that gravitational waves acquire a
nonvanishing mass. Unlike dRGT, the self-accelerating
branch of MTMG is free from fatal instabilities and thus
provides a firm testing ground for gravitational wave
physics of massive gravity. However, from the viewpoint
of recent tensions in cosmology, this branch of MTMG is
as good as but not better than ΛCDM. In this respect the
normal branch of MTMG could perform better than
ΛCDM. Indeed, in the normal branch of MTMG the scalar
linear perturbations behave differently from ΛCDM.
Although the normal branch ofMTMGhas proved to be an

interestingpossibility as to try tomodifygravity at large scales
in a consistent and minimal way, still it had some features
which were setting some theoretical and phenomenological
issues. In particular, MTMG was leading to a modified
effective Newtonian gravitational constant which at large
scales behaves as Geff=GN ∝ ðμ2=H2 − 2Þ−2 [30]. This
expression for Geff=GN is well behaved for negative-
squared-mass for the graviton (for which, though, a tachyonic
instability, with a timescale of orderH−1

0 , would be affecting
modes of order k=ða0H0Þ ≃ 1) [36]. But for a large-enough
positive-squared-mass graviton (that is still inside the allowed
Ligo bounds), a range of positive μ2, for μ ≃ 2H0, would lead
to strong modifications to Geff=GN , leading in turn to strong
constraints from the data even at nonlinear scales [37]. In
particular, in a recent paper, on studying the effect of Planck
data on MTMG, it was discovered that positive μ2 is actually
preferred but because of the above mentioned behavior of
Geff=GN , μ2, it is strongly constrained toward values very
close to zero [24]. This phenomenon puts strong limits on the
normal branch of MTMG.
In this paper, we try to solve these issues of the normal

branch of MTMG by extending the MTMG itself, in a way
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which is meant to cure the above mentioned behavior of
Geff=GN . In order to extend MTMG we still need to add
constraints to the Hamiltonian of a precursor theory as to
remove the unwanted degrees of freedom, but we change
the constraints themselves. One of the constraints of
MTMG was chosen as to admit exactly the same cosmo-
logical background as dRGT. As mentioned above, this
constraint defining MTMG was leading to the presence of
two branches for the background dynamics. On the other
hand, the extended MTMG (eMTMG) has in general a
different background dynamics from dRGT, especially if
these same modifications/extensions lead to a better
behaved phenomenology. Indeed, eMTMG allows for a
much larger freedom in terms of background dynamics,
still being a minimal theory (i.e. with only two tensor
propagating degrees of freedom on any background).
However, as we shall see later on, the condition that on
any allowed cosmological background Geff=GN will never
have poles and μ2 being non-negative, will considerably
reduce the set of allowed theories. Still, we give a proof of
existence of a large class of models which indeed satisfy
these criteria (and which by construction does not reduce to
dRGT at the background level). We also show that at the
level of the background and linear perturbations, all pre-
dictions of the models in this class are captured by a smaller
subclass of eMTMG with only six parameters, which
determine the cosmological constant and the behavior of
μ0 and Geff;0=GN . One of the parameters, c4, which we will
see later on, is equivalent to the cosmological constant in the
ΛCDM model. The other five are completely new which
affects both background and perturbation.
As was happening in MTMG, for environmental den-

sities much larger than the present cosmological ones, that
is ρ ≫ M2

PH
2
0 (valid at solar system scales and at high

redshifts) we find that Geff=GN → 1.
This paper is organized as follows. Section II shows the

construction of the eMTMG, where we introduce two
general functions, F1 and F2, for which we make use of
the Cayley-Hamilton theorem. In particular, after writing
down a precursor theory, we add constraints to make the
theory minimal, in the sense that no additional degrees of
freedom are propagating in the gravitational sector besides
the gravitational waves, which become massive. Then, in
Sec. III, we study the spatially flat, homogeneous and
isotropic cosmological background in this theory. Here,
using the minisuperspace Hamiltonian and the constraints,
we show that one of the Lagrange multipliers λðtÞ vanishes
in the spatially flat, homogeneous and isotropic back-
ground. Unlike the original MTMG, the space of solutions
is not separated into two branches: the self-accelerating
branch and the normal branch, rather there is one and only
one universal branch. While in Appendix C we consider the
condition under which the separation into the two branches
occurs, in the rest of the present paper we study the general
case. In Sec. IV, we study linear perturbations around the

spatially flat, homogeneous and isotropic background in
this theory. We first consider the propagation of the
gravitational waves on the cosmological background. As
expected, the two modes are now massive. Subsequently,
we derive the expression for the Geff=GN considering the
eMTMG minimally coupled with a pressureless fluid.
Furthermore, we derive equations of motion for scalar
perturbations in the presence of multiple perfect fluids with
general equations of state. In Sec. V we then make a list of
phenomenologically motivated criteria to be imposed on
the theory, which makes it possible for us to find a subset of
models with a finite number of parameters. In particular, we
require the finiteness at any redshift of Geff=GN which is
modified in anyway at late times, i.e. without altering the
early time dynamics. In addition, we impose the condition
that the squared mass of the gravitational waves is positive,
i.e. μ2 > 0. We also demand the finiteness of the ISWeffect
at any redshift. In order to give a working example for
such a theory, which is nonetheless endowed with the
desired features of the general model, in Sec. VI we adopt a
simple polynomial ansatz for F1;2 and impose the phe-
nomenological criteria explained above step by step. As a
consequence, we obtain a rather simple subclass of the
general model which satisfies all the criteria. It turns out that

FIG. 1. This figure shows relations among different subclasses
of the eMTMG and the original MTMG. The classification has
been made according to two scalar quantities which determine the
phenomenology of Geff . Other criteria for the classification can
be in principle considered. The region where phenomenological
criteria (VA–VD) are satisfied determines a class of models with
appealing phenomenological properties, e.g. Geff=GN is finite for
any dynamics of the cosmological background, the tensor
graviton has a non-negative mass squared, etc. Finally it is
possible to give a simple subset (having at most six free
parameters) which already possesses all the defining properties
of the model. The quantities Ξ1 and Ξ2 are defined in Eqs. (66)
and (67) respectively. The quantity Ξ1, which depends on the
function F2, discriminates the behavior of the theory in the high-k
regime. Also the quantity Ξ2, the mirror quantity for the function
F1, has a strong influence on the phenomenology of the theory.
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at the level of the background and the linear perturbations, all
observables within this subclass depend only on six param-
eterswhileF1;2 depend onmore parameters.We thus remove
this degeneracy by defining a further simpler subclass, by
picking up the model for F1;2 which only shows the above-
mentioned six free parameters, i.e. five more than ΛCDM.
Finally, we report our conclusion in Sec. VII. Figure 1
summarizes the results. We find it useful to add five
appendices to the main text. Appendix A shows some useful
variational formulas needed for the construction of the
theory. In Appendix B we discuss the original MTMG as
a special case of this eMTMG. In Appendix C we consider
the condition under which the space of spatially flat,
homogeneous and isotropic solutions of the eMTMG is
divided into two branches, the so-called self-accelerating
and normal branches. In Appendix D, we provide the full
expression for Geff=GN and the ISW potential field. Finally,
Appendix E discusses a rather peculiar model having
massless tensor modes (on the cosmological background),
with nontrivial dynamics for the scalar perturbations,
i.e. Geff=GN ≠ 1.

II. MODEL CONSTRUCTION

A. Building blocks

In order to build up the model, we will follow a path
which is similar to the one followed in [29,30]. First of all,
in the following, we will make use of the unitary gauge and
the metric formalism.1 In the unitary gauge we introduce a
three-dimensional fiducial metric with positive definite
signature, which is, by construction of the theory, an
external, explicitly time (and time only) dependent field,
that we denote by γ̃ijðtÞ. In the unitary gauge we will also
introduce another external field, M, that we call fiducial
lapse function. In order for the theory to allow spatially flat,
homogeneous and isotropic solutions, we require the
fiducial sector to be compatible with the symmetry of such
solutions. For this reason we will identify γ̃ij ¼ ãðtÞ2δij
and M ¼ MðtÞ, where ãðtÞ is the fiducial scale factor.
This three-dimensional fiducial metric admits an inverse,
denoted by γ̃ij, which satisfies γ̃ilγ̃lj ¼ δij. Out of these
external fields, we can also define the following field ζ̄ij as

ζ̄ij ≡ 1

2M
γ̃il _̃γlj; ð1Þ

which describes the rate of change of the fiducial metric.2

Notice that in the unitary gauge description, having the

presence of the external fields which required a full
coordinate choice, will explicitly break four-dimensional
diffeomorphism, and a choice of slicing has been auto-
matically fixed.
Of course, we also have physical, dynamical metric

variables, which we adopt from the ADM formalism. In
particular we have a lapse function N, a shift vector Ni and
a three-dimensional metric γij, which admits the inverse γij.
Out of them, the four-dimensional physical metric can be
written as

gμνdxμdxν ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ: ð2Þ

Having introduced the dynamical field γij and the external
field γ̃ij, which in unitary gauge have fixed, given dynam-
ics, we can introduce the building blocks of the theory Ki

j

and Ki
j which satisfy the following properties

Ki
lKl

j ¼ γ̃ilγlj; ð3Þ

Ki
lKl

j ¼ γilγ̃lj; ð4Þ

Ki
lKl

j ¼ δij ¼ Ki
lKl

j: ð5Þ

Some useful formulas for the variations of the quantities
defined above are summarized in Appendix A.

B. Precursor Hamiltonian

We now have all the required building blocks to define
the theory, and we will do so by writing down its
Hamiltonian density, and then via a Legendre transforma-
tion, we will find its Lagrangian density. Then, along the
same lines of MTMG, see e.g. [30], we first introduce a
precursor Hamiltonian density, which we now define to be

Hpre ≡ −NRGR
0 − NiRi þ

1

2
m2M2

PN
ffiffiffi
γ

p
F1ð½K�; ½K2�;

½K3�Þ þ 1

2
m2M2

PM
ffiffiffĩ
γ

p
F2ð½K�; ½K2�; ½K3�Þ; ð6Þ

where

RGR
0 ¼ M2

P

2

ffiffiffi
γ

p
Rð3Þ −

2

M2
P

ffiffiffi
γ

p �
γikγjl −

1

2
γjiγkl

�
π̃ijπ̃lk; ð7Þ

Ri ¼ 2
ffiffiffi
γ

p
γijDkπ̃

jk; ð8Þ

π̃ij ≡ πijffiffiffi
γ

p ; ð9Þ

and ½K�≡Ki
i, ½K2�≡Ki

jKj
i, etc. Here we point out that

the fields N and Ni have been considered to be Lagrange
multipliers, whereas the dynamical degrees of freedom
enter in the six independent components of γij, which
lead, in turn, to twelve phase space variables, since πij

1Using the unitary gauge, although not strictly necessary, turns
out to be simplifying the calculations. As for the choice of the
metric formalism, one could equivalently choose the vielbein
formalism to define the theory, as done in [29,30].

2In the vielbein formalism we instead define ζ̃ij ¼ 1
MEi

A
_EA

j,
where γ̃ij ¼ δABEA

iEB
j, giving ζ̄ij ¼ 1

2
ðζ̃ij þ γ̃ilζ̃klγ̃jkÞ, which in

any case agree with each other when γ̃ij ¼ ã2δij.
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correspond to their conjugate momenta. Here the operator
Di represents the covariant derivative compatible with the
three-dimensional metric γij.
By looking at Eq. (6), the precursor theory is defined in

terms of two functions F1;2, which depend on the trace of
powers of the above defined building blocks Ki

j and Ki
j.

Making use of the Cayley-Hamilton theorem applied
to a three-dimensional matrix, e.g. Ki

j, we only choose
½K�; ½K2�; ½K3� as the variables out of which the function
F1 depends on. Also by the same theorem, the mirror
variables ½K�; ½K2�; ½K3� can be rewritten in terms of the
previous ½K�; ½K2�; ½K3� variables, which become the really
independent ones. Therefore, on looking at the precursor
Hamiltonian, we can further define the following two
quantities

R0 ≡RGR
0 −

1

2
m2M2

P
ffiffiffi
γ

p
F1ð½K�; ½K2�; ½K3�Þ; ð10Þ

H1 ¼
1

2
m2M2

P

Z
d3xM

ffiffiffĩ
γ

p
F2ð½K�; ½K2�; ½K3�Þ: ð11Þ

Indeed, for this precursor theory, the four Lagrange
multipliers N and Ni set four constraints, whereas H1

corresponds to the Hamiltonian of the precursor theory
evaluated on the constraint surface (on which R0 and Ri
all vanish). One can then evaluate the time derivative of
the constraints R0 and Ri. As for _R0, we would find
_R0 ¼ −NifR0;Rig þ � � �, which needs to vanish on the
constraints surface. However the Poisson brackets
fR0;Rig do not all vanish, then setting _R0 ≈ 0, would
actually fix one of the Lagrange multipliers without
imposing any new constraint on the theory. Indeed,

since the rank of fR0;Rig is two, not all the eight
R0, Ri, _R0, _Ri are constraints, but only six of them.
This means that this theory has 1

2
ð12 − 6Þ ¼ 3 degrees of

freedom, where twelve represents the number of inde-
pendent components of γij and their conjugate momenta
in the phase space.
The precursor theory we have considered consists of

three degrees of freedom. These are the two polarizations
of the transverse-traceless gravitational waves and the
other one is an additional mode: it is a scalar on a
homogeneous and isotropic manifold. Our idea, to be
studied in detail in the next subsection, is to remove the
scalar mode by adding additional constraints to the
precursor theory.
By using the Stückelberg trick, we will be seeing that

one of them (or better a gauge invariant combination of
fields) corresponds to the extra scalar mode which we
want to remove. We shall not study the properties of this
extra mode since it does not exist in the minimal theories.

C. Hamiltonian of the extended minimal theory
of massive gravity

From what we have learned in the previous section, we
still need to add two new constraints as to make the theory
minimal, i.e. having only two propagating degrees of
freedom in the gravity sector. In order to achieve this
goal, we can follow the same steps of MTMG as to make
the theory minimal. Let us use the on-shell precursor
Hamiltonian H1 as to define the quantities C0 and Ci as
follows. They would correspond to time derivatives of the
R0 and Ri constraints if H1 were the Hamiltonian of the
system.

C0 ≡ fR0; H1g þ
∂R0

∂t

¼ m2M
ffiffiffĩ
γ

p ð2γ̃ijπ̃ce − γ̃icπ̃jeÞ
�
1

2
F2;½K�Kl

iγlcγje þ F2;½K2�γicγje þ
3

2
F2;½K3�Kl

iγlcγje

�

−m2M2
P

ffiffiffi
γ

p
Mζ̄ij

�
1

2
F1;½K�Kl

kγ̃liγ
kj þ F1;½K2�γ̃ilγjl þ

3

2
F1;½K3�Kj

lγ̃ikγ
lk

�
; ð12Þ

Ci½vi� ¼
Z

d3xCivi ≡ fRi½vi�; H1g ¼
�Z

d3xRivi; H1

�

¼ 1

2
m2M2

P

Z
d3x

ffiffiffi
γ

p
Djvi

�
1

2
M

ffiffiffĩ
γ

p
ffiffiffi
γ

p F2;½K�ðKj
lγ̃

lkγik þKk
lγ̃

ljγkiÞ

þ 2M
ffiffiffĩ
γ

p
ffiffiffi
γ

p F2;½K2�γilγ̃jl
3

2
M

ffiffiffĩ
γ

p
ffiffiffi
γ

p F2;½K3�ðKj
lγ̃

lkγik þKk
lγ̃

ljγkiÞ
�
; ð13Þ

where we have taken into consideration the fact that having chosen the unitary gauge, the constraintR0 explicitly depends
on time. The notation F;X represents partial derivative of F with respect to X. The previous relations lead to
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C0 ¼
1

2
m2M2

PM
ffiffiffĩ
γ

p
ð2γ̃bdπ̃ce − γ̃bcπ̃deÞ½F2;½K�Ka

bγacγde þ 2F2;½K2�γbcγde þ 3F2;½K3�Ka
bγacγde� þ ffiffiffi

γ
p

Cζ; ð14Þ

Cζ ≡ −
1

2
m2M2

PMζ̄cdðF1;½K�γdbKa
bγ̃ac þ 2F1;½K2�γdbγ̃bc þ 3F1;½K3�Kd

bγ
beγ̃ecÞ; ð15Þ

Ci ¼ −m2M2
P

ffiffiffi
γ

p
Dj

�
M

ffiffiffĩ
γ

p
ffiffiffi
γ

p
�
F2;½K�
4

ðKj
lγ̃

lk þKk
lγ̃

ljÞγki þ F2;½K2�γ̃jlγil þ
3

4
F2;½K3�ðKj

lγ̃
lk þKk

lγ̃
ljÞγki

��
: ð16Þ

We are now ready to define the extended MTMG theory by giving its Hamiltonian density as

H ¼ −NR0 − NiRi þ
1

2
m2M2

PM
ffiffiffĩ
γ

p
F2ð½K�; ½K2�; ½K3�Þ − λC0 − λiCi: ð17Þ

Now all the eight constraints, imposed by the Lagrange multipliers N, Ni, λ, λi, are second class which then leave only two
dynamical degrees of freedom. We can write down the Hamiltonian of the theory as

H ¼
Z

d3x

�
−NR0 − NaRa þ

1

2
m2M2

PM
ffiffiffĩ
γ

p
F2ð½K�; ½K2�; ½K3�Þ − λC0 −

ffiffiffi
γ

p ðDjλ
iÞCji

�
; ð18Þ

where we have introduced the three-dimensional tensor

Cji ≡ 1

2
m2M2

PM
ffiffiffĩ
γ

p
ffiffiffi
γ

p
�
1

2
F2;½K�ðKj

kγ̃
kl þ γ̃jkKl

kÞγli þ 2F2;½K2�γ̃jkγki þ
3

2
F2;½K3�ðKj

kγ̃
kl þ γ̃jkKl

kÞγli
�
: ð19Þ

In summary, since the constraints for the theory now add to eight, the theory is minimal, i.e. the number of gravitational
degrees of freedom is now 1

2
ð12 − 8Þ ¼ 2.

Now we have arrived at the Hamiltonian of the eMTMG, where we have removed the additional mode by adding
constraint λC0 and

ffiffiffi
γ

p ðDjλ
iÞCji to the precursor theory (actually only two of them are new to the precursor theory). Then the

remaining two modes are independent polarization of transverse-traceless gravitational waves with mass.

D. Minimal theory Lagrangian

In order to find the Lagrangian density of the theory, we need to perform a Legendre transformation. From the
Hamiltonian equations of motion for γij, we find

_γij ¼ fγij; Htotg ¼ 2N
M2

P
ð2γikγjd − γijγkdÞπ̃kd þ γikDjNk þ γjkDiNk

þ 1

2
m2λM

ffiffiffĩ
γ

p
ffiffiffi
γ

p ½2γ̃kdF2;½K2�ðγijγkd − 2γikγjdÞ − ðKk
dF2;½K� þ 3Kk

dF2;½K3�Þγ̃deðγieγjk þ γikγje − γijγkeÞ�; ð20Þ

so that we can also find the relation between the extrinsic curvature Kij ≡ 1
2N ð_γij − γikDjNk − γjkDiNkÞ and the canonical

momenta πij as

Kij ¼
1

M2
P
ð2γikγjd − γijγkdÞπ̃kd þ

m2

4
λ
M
N

ffiffiffĩ
γ

p
ffiffiffi
γ

p ½2γ̃kdF2;½K2�ðγijγkd − 2γikγjdÞ

− ðKk
dF2;½K� þ 3Kk

dF2;½K3�Þγ̃deðγieγjk þ γikγje − γijγkeÞ�; ð21Þ

out of which we have

π̃ij ¼ M2
P

2
ðγikγjd − γijγkdÞKkd −

m2M2
P

8

M
N
λΘij: ð22Þ

Here, we have introduced the following tensor
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Θij ¼ −
ffiffiffĩ
γ

p
ffiffiffi
γ

p ½ðγ̃jkKi
k þ γ̃ikKj

kÞF2;½K� þ 4γ̃ijF2;½K2� þ 3ðγ̃jkKi
k þ γ̃ikKj

kÞF2;½K3��: ð23Þ

After a straightforward calculation, we can write down the Lagrangian density of the extended MTMG as

L ¼ M2
P

2

ffiffiffi
γ

p
N½γijγkdðKikKjd − KijKkdÞ þ R� − 1

2
m2M2

P
ffiffiffi
γ

p
NF1ð½K�; ½K2�; ½K3�Þ − 1

2
m2M2

P

ffiffiffĩ
γ

p
MF2ð½K�; ½K2�; ½K3�Þ

þm4M2
Pλ

2M2

64N
ffiffiffi
γ

p
γikγjdð2ΘijΘkd − ΘikΘjdÞ þ λ

ffiffiffi
γ

p �
Cζ −

1

4
m2M2

PMKijΘij

�
þ ffiffiffi

γ
p ðDjλ

iÞCji: ð24Þ

It should be pointed out that the constraints imposed, at the
level of the Lagrangian, impose a nontrivial relation not
only on the three-dimensional metric, but also on the
extrinsic curvature. This structure then is intrinsically
different from the Lorentz-breaking massive gravity theo-
ries of [38,39].
The idea behind MTMG/eMTMG is to have a viable

theory of massive gravity. Still this motivation led us
extending MTMG into eMTMG. Part of this process
consists of removing unwanted extra modes. Then the
theory here introduced, in the gravity sector, is left only
with the two transverse-traceless gravitational waves, hence
we call it as “minimal theory.”
It is interesting to notice that this theory is different from

other widely known modified theories of gravity like
scalar-tensor and vector-tensor theories, which introduce
in general additional degrees of freedom.
The bottom line here is that we have extended MTMG to

a more general class of massive gravity theories, which all
only possess, at the fully nonlinear level, two tensor-type
degrees of freedom on any background. We call the new
theory the eMTMG.3 The original MTMG is a particular
case of eMTMG and it can be refound when the functions
F1;2 reduce to this special form:

FMTMG
1 ¼ c1

�
1

3
½K3� − 1

2
½K�½K2� þ 1

6
½K�3

�

þ 1

2
c2ð½K�2 − ½K2�Þ þ c3½K� þ c4; ð25Þ

FMTMG
2 ¼ c1½K� þ 1

2
c2ð½K�2 − ½K2�Þ

þ c3

�
1

3
½K3� − 1

2
½K�½K2� þ 1

6
½K�3

�
; ð26Þ

as shown in Appendix B.

III. HOMOGENEOUS AND ISOTROPIC
BACKGROUND

So far we have extended the original MTMG theory to a
much larger class of theories which is defined out of two
free functions F1;2 each dependent on three variables. This
class of theories is expected to include a very large set of
possibilities in terms of phenomenology. However, the
original motivation to introduce such a class of theories
was, and still is, to cure the problems encountered in the
normal branch of MTMG, namely the presence of a pole
in the function Geff=GN , which would in turn lead to an
unviable cosmology in a neighborhood of them.4 Then it
would be interesting to study whether inside the class of
eMTMG theories, it is possible to find a subset which is
always phenomenologically acceptable. By “always” we
mean for any redshift and for any background dynamics.
This extra dynamical condition might be too strong, as
effectively, one would need only a subset of well-defined
dynamics, however, after imposing it, if such a subset
existed, would provide a ghost-free, instability-free arena,
where we can try to solve today’s tensions in cosmology
out of a massive graviton.
Hence, let us explore these extended models as to find a

good behavior for Geff=GN, the effective gravitational con-
stant for the density perturbations of a pressureless fluid on a
homogeneous and isotropic background. For this aim, let us
study in this section, first of all, the background for these
theories in thepresence ofmatter fields. Let us focus thenon a
spatially flat FLRW background which is described by

N ¼ NðtÞ; Ni ¼ 0; γij ¼ aðtÞ2δij;
λ ¼ λðtÞ; λi ¼ 0; ð27Þ
whereas the fiducial sector is given by

M ¼ MðtÞ; γ̃ij ¼ ãðtÞ2δij: ð28Þ
For the matter sector we introduce a perfect fluid (one for

each matter component) modeled by the Schutz-Sorkin
action as in [40–42]

3We name these models as “extended” because they possess a
general graviton mass term at the level of the Hamiltonian.

4At the pole or approaching the pole, at least at linear order, the
theory would exit the regime of validity of a low-energy effective
theory description.
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Sm ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p ½ρðnÞ þ Jμ∂μl�; n≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−JμJνgμν

p
;

ð29Þ

for which we can introduce the normalized fluid
4-velocity as uα ¼ Jα=n, and gμν is the four-dimensional
physical metric written in the ADM splitting (2). On a
spatially flat FLRW background we have at the level of the
background

J0ðtÞ ¼ J ðtÞ
NðtÞ ; J ðtÞ ¼ nðtÞ ¼ N 0

a3
; ð30Þ

and the proportionality constantN 0 determines the constant
number of fluid particles (n being their number density).
Furthermore, the background equations of motion imply

lðtÞ ¼ −
Z

t
Nðt0Þρ;nðt0Þdt0: ð31Þ

For the spatially flat FLRW background we find

½Kn� ¼ 3

�
ã
a

�
n
; ½Kn� ¼ 3

�
a
ã

�
n
; ð32Þ

so that the minisuperspace5 Lagrangian density evaluated
on the background reduces to

Lmini ¼
3

2

�
_að3F2;½K3�a2 þ 2F2;½K2�aãþ F2;½K�ã2Þ

M
N

− _̃aða2F1;½K� þ 2F1;½K2�aãþ 3F1;½K3�ã2Þ
�
m2M2

Pλ −
3M2

Pa _a
2

N

−
3M2ð3F2;½K3�a2 þ 2F2;½K2�aãþ F2;½K�ã2Þ2m4M2

Pλ
2

16aN
−
m2M2

Pã
3ðMF2 þ NF1Þ

2

− a3
X
I

½J I
_lI þ NρIðJ IÞ�: ð33Þ

On evaluating the Euler-Lagrange equations for the fields N, a, λ, lI and J I we find the equations of motion for the
background.
In order to evaluate the value of λ on the background it turns out to be much simpler to study the Hamilton equations of

motion. Out of the Lagrangian we can find the Hamiltonian in the minisuperspace via a Legendre transformation as

Hmini ¼
�
pað3F2;½K3�a2 þ 2F2;½K2�aãþ F2;½K�ã2ÞM

4a
þ 3M2

P
_̃aða2F1;½K� þ 2F1;½K2�aãþ 3F1;½K3�ã2Þ

2

�
m2λ

þm2M2
Pã

3MF2

2
þ N

�
F1a3m2M2

P

2
þ a3

X
I

ρIðJ IÞ −
p2
a

12aM2
P

�
þ
X
I

lIpJ I þ
X
I

l̃IðJ Ia3 þ plIÞ; ð34Þ

where pa, pJ I and plI are the momenta conjugate to the variables a, J I and lI respectively, whereas λ, N, lI and l̃I are all
Lagrange multipliers which set constraints. One such constraint is then

C0 ¼
pað3F2;½K3�a2 þ 2F2;½K2�aãþ F2;½K�ã2ÞM

4a
þ 3M2

P
_̃aða2F1;½K� þ 2F1;½K2�aãþ 3F1;½K3�ã2Þ

2
≈ 0; ð35Þ

whereas the Hamiltonian constraint can be written as

R0 ¼
F1a3m2M2

P

2
þ a3

X
I

ρIðJ IÞ −
p2
a

12aM2
P
≈ 0: ð36Þ

Let us now impose that the time derivative of the constraints should vanish on the constraint surface. For example we have

_pJ I ¼ fpJ I; Hminig ¼ −a3ðNρI;J þ l̃IÞ ≈ 0; or l̃I ≈ −NρI;J ; ð37Þ

which sets all the l̃I’s Lagrange multipliers in the matter sectors. Furthermore we have

5We have evaluated the Lagrangian density (33) by using only the fields which can fully describe a homogeneous and isotropic
manifold. For example, in the metric tensor, this approach only keeps then the lapse NðtÞ and the scale factor aðtÞ. In general we have
several fields living in one-dimensional space that we call minisuperspace.
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fJ Ia3 þ plI; Hminig ¼ 3J Ia2
�
Mm2ð3F2;½K3�a2 þ 2F2;½K2�aãþ F2;½K�ã2Þλ

4a
−

paN
6M2

Pa

�
þ a3lI ≈ 0; ð38Þ

which can be used in order to set the Lagrange multipliers lI’s. Also we can find

_R0 ≡ fR0; Hminig þ
∂R0

∂ã
_̃a ≈ 0; ð39Þ

which combined with C0, gives

_R0 − C0 ≈ fλ ≈ 0; ð40Þ

where f is a quantity which in general does not vanish, unless some fine-tuned dynamics are considered. This equation then
determines the Lagrange multiplier λ, without adding any new constraint, and it finally leads to the conclusion that on the
constraint surface, that is on the background, we need to impose λðtÞ ¼ 0.
With λðtÞ ¼ 0, the independent background equations of motion greatly simplify and reduce to

3M2
PH

2 ¼
X
I

ρI þ
1

2
M2

Pm
2F1; ð41Þ

H
M
N

��
ã
a

�
2

F2;½K� þ 2

�
ã
a

�
F2;½K2� þ 3F2;½K3�

�
¼

_̃a
Nã

ã
a

�
F1;½K� þ 2

�
ã
a

�
F1;½K2� þ 3

�
ã
a

�
2

F1;½K3�

�
; ð42Þ

_ρI
N

¼ −3HðρI þ PIÞ; ð43Þ

where H ≡ _a=ðNaÞ is the Hubble expansion rate for the physical metric. Let us then define

X ≡ ã
a
; ð44Þ

and suppose that X > 0, during the whole evolution of the universe in the regime of interest. The constraint equation,
Eq. (42), can be rewritten as

H
M
N
ðX2F2;½K� þ 2XF2;½K2� þ 3F2;½K3�Þ ¼

�
_X
N
þHX

�
ðF1;½K� þ 2XF1;½K2� þ 3X2F1;½K3�Þ: ð45Þ

Unlike the original MTMG, the space of solutions for
Eq. (45) is not in general separated into two branches,
the so called self-accelerating and normal branches. The
special case in which such separation occurs is briefly
studied in Appendix C. On the other hand, in the rest of the
present paper we consider the general case, that is the single
universal branch, defined by Eq. (45), for all the eMTMG
models.

IV. LINEAR PERTURBATIONS

In this section we study linear perturbations around the
spatially flat FLRW background introduced in the previous
section.

A. Gravitational waves

Let us now consider the tensor perturbations for the
physical metric, namely

N ¼ NðtÞ; Ni ¼ 0; γij ¼ a2
�
δij þ

X
λ¼þ;×

ϵλijhλ

�
; ð46Þ

where the two symmetric polarization tensors satisfy both
the transverse and traceless conditions ϵλijδ

jl
∂lhλ ¼ 0,

δijϵλij ¼ 0 and the chosen normalizations ϵþijϵ
þ
lmδ

ilδjm ¼
1 ¼ ϵ×ijϵ

×
lmδ

ilδjm, together with ϵþijϵ
×
lmδ

ilδjm ¼ 0. After
expanding the Lagrangian at the second order in the tensor
perturbations, we obtain the quadratic action describing
their dynamics as

S ¼ M2
P

8

X
λ¼þ;×

Z
d4xNa3

��
_hλ
N

�2

−
ð∂hλÞ2
a2

− μ2h2λ

�
; ð47Þ

where
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μ2 ¼ 1

2
m2X½rðX2F2;½K� þ 4XF2;½K2� þ 9F2;½K3�Þ

þ F1;½K� þ 4XF1;½K2� þ 9X2F1;½K3��; ð48Þ

and we have defined for later convenience also the quantity

r≡ 1

X
M
N
: ð49Þ

Therefore these models do introduce a nontrivial mass for
the tensor modes, however the speed of propagation,
for high-k modes, i.e. at energies for which the graviton
becomes ultrarelativistic, will still be equal to unity.
Furthermore, the graviton mass not only does not vanish
in general, but also it is changing with time. For this reason,
we will also demand that a well-behaved subset of eMTMG
models would also satisfy the condition of a non-negative
μ2 for any dynamics of the background.

B. Effective gravitational constant

In this section we consider instead the scalar perturba-
tions and expand the action for the theory in the presence
of matter perfect fluids up to the second order and remove
at the level of the action all the auxiliary fields to find
the quadratic action for the field δρ=ρ, which we shall
define below.
First of all we will explicitly write down all the

perturbation variables, both in the gravity and in the matter
sector. We introduce scalar perturbations for the physical
metric in the following way:

N ¼ NðtÞð1þ αÞ; ð50Þ

Ni ¼ NðtÞ∂iχ; ð51Þ

γij ¼ aðtÞ2δijð1þ 2ζÞ þ 2∂ijE: ð52Þ

Since we have fixed from the beginning the unitary gauge,
we cannot impose any gauge condition on the perturbation
variables. We also need to introduce perturbations for the
following eMTMG variables

λ ¼ δλ; λi ¼ 1

a2
δij∂jδλV: ð53Þ

As for the matter sectors we proceed instead as follows.
First of all we make the following split

J0 ¼ J ðtÞ
NðtÞ ð1þ δJÞ; ð54Þ

Ji ¼ 1

a2
δij∂jδJV; ð55Þ

l ¼ lðtÞ þ δl: ð56Þ

For each matter component we consider matter field
redefinitions as follows. We first define the fluid perturba-
tion scalar velocity v as

ui ¼ giμuμ ¼ ∂iv; ð57Þ

which leads to the field redefinition

δJV ¼ nðtÞðv − χÞ: ð58Þ

Expanding the action at the second order in the perturbation
variables, finding the equation of motion for v and solving
it for δl gives

δl ¼ ρ;n v; ð59Þ

which can be used in order to integrate out the field δl.
Also we can perform a field redefinition as follows

δJ ¼ ρ

nρ;n

δρ

ρ
− α; where

δρ

ρ
≡ ρ

ρðtÞ − 1: ð60Þ

As for now we have an action for the perturbation which
is a function of the following variables: α, χ, ζ, E, and
δλ; δλV in the metric sector, together with δρ=ρ and v for
each matter-fluid component. We can find equations of
motion for each of these perturbation variables, and we
label them, e.g. as Eχ (which vanish, i.e. Eχ ¼ 0, and the
subscript shows the variables for which the equation of
motion is derived, χ in this example). In the following,
although not necessary, we will use time reparametrization
as to set NðtÞ ¼ aðtÞ. Since we want to match the
phenomenology with observations we will also make the
following field redefinitions which link α and ζ to the gauge
invariant definitions of the Bardeen potentials ψ and ϕ:

α ¼ ψ −
1

a
_χ þ 1

a
d
dt

�
a
d
dt

�
E
a2

��
; ð61Þ

ζ ¼ −ϕ −Hχ þ aH
d
dt

�
E
a2

�
; ð62Þ

δρ

ρ
¼ δ −

_ρ

aρ
χ þ _ρ

ρ

d
dt

�
E
a2

�
; ð63Þ

whereas the last equation introduces δ as the gauge
invariant longitudinal matter perturbation. Finally we also
make the field redefinition

v ¼ −
a
k2

θ þ χ − a
d
dt

�
E
a2

�
; ð64Þ

where θ is another gauge invariant variable related to the
scalar fluid velocity. We can also introduce, at the level of
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perturbation, a shear term for each matter component as
done in [16].
So far, the equation of state of the perfect fluid is general

and in the next subsection we shall further consider
equations of motion for this general system. In the rest
of this subsection, on the other hand, we restrict our
considerations to the case of a single perfect fluid to
compute its sound speed and in the case of dust, the
effective gravitational constant.
The first nontrivial feature of the models consists in the

constraint equation set by the field δλV . In fact we find that
it can be written as

ζ ∝ Ξ1

k2

a2
E: ð65Þ

Ξ1 ≡ F2;½K�½K� þ
4

X
F2;½K�½K2� þ

6

X2
F2;½K�½K3� þ

4

X2
F2;½K2�½K2�

þ 12

X3
F2;½K2�½K3� þ

9

X4
F2;½K3�½K3� þ 2F2;½K2� þ

6

X
F2;½K3�:

ð66Þ

Therefore, the quantity Ξ1 discriminates the behavior of the
theory in the high-k regime, as, in general, the phenom-
enology of the theory will be different for the eMTMG
models depending on whether Ξ1 is zero (or negligible) or
not. The mirror quantity Ξ2 for the function F1 turns out to
have also a strong influence on the phenomenology of the
theory, as we will see later on

Ξ2 ¼ F1;½K�½K� þ 4XF1;½K�½K2� þ 6X2F1;½K�½K3�
þ 4X2F1;½K2�½K2� þ 12X3F1;½K2�½K3�

þ 9X4F1;½K3�½K3� þ 2F1;½K2� þ 6XF1;½K3�: ð67Þ

Indeed, one can proceed to remove all the auxiliary fields
except for the field δρ=ρ, which, in the case of a single
fluid, has the following schematic quadratic Lagrangian
density

Lδρ ¼ Aðk2; tÞ
�
1

N
∂

∂t

�
δρ

ρ

��
2

þ Bðk2; tÞ
�
δρ

ρ

�
2

: ð68Þ

In the high-k regimes, we find that the no-ghost condition is
always verified, since

A ¼ 1

2
Na3

a2

k2
ρ2

nρ;n
þOða4=k4Þ; ð69Þ

which is always positive, provided that nρ;n ¼ ρþ P > 0.
As for the B term, we need to distinguish among
possibilities.

(i) Case for which Ξ1 ≠ 0, and in this case we have

B ¼ −
Na3

2

ρ;nnρ
2

ρ2;n
þOða2=k2Þ; or c2s ¼

nρ;nn
ρ;n

;

ð70Þ

giving the standard results for the propagation of
perturbations in a fluid.

(ii) Case for which Ξ1 ¼ 0, or very negligible namely
Ξ1k2=ða2H2Þ ≪ 1, and in this case we find instead

B ¼ −
Na3

2

�
ρ;nnρ

2

ρ2;n
þ Ξ2B2ðtÞ

m2ρ2

M2
PH

4

�
þOða2=k2Þ;

or c2s ¼
nρ;nn
ρ;n

þ Ξ2B2

m2

H2

ρþ P
M2

PH
2
; ð71Þ

which leads to a nontrivial propagation speed unless
also Ξ2 ¼ 0 (or, as mentioned above, very negli-
gible). Indeed the case Ξ1 ¼ 0 ¼ Ξ2 is the one we
are going to focus on in the following sections.6

Nonetheless, as long as Ξ2 (or B2) does not vanish,
the speed of propagation for any matter fluid will get
modified. This nontrivial property is shared by
another minimal theory of gravity introduced and
studied in [43,44]. In particular, a pressureless fluid
will acquire a nontrivial contribution. This unusual
behavior of matter fields can strongly constrain the
phenomenology of the theories belonging to this
special case.

(iii) Case for which Ξ1 ¼ 0 ¼ Ξ2 and ρ;nn ¼ 0 ¼ c2s ,
where the last equation of state corresponds to
choosing a pressureless fluid as matter field. In this
case the Lagrangian density of Eq. (68) for the
energy-density perturbations reduces to

Ldust ¼
1

2
Na3

a2

k2
ρ

��
1

N
∂

∂t

�
δρ

ρ

��
2

þ 4πGeffρ

�
δρ

ρ

�
2
�
; ð72Þ

out of which one can deduce the expression for
Geff=GN , whose value (which is not unity, in
general) is explicitly written in Appendix D.

C. Equations of motion for scalar perturbations

In this subsection, instead of considering a Lagrangian
approach, we consider an equivalent approach, based on
studying the equations of motion for scalar perturbations in
the presence of matter fields modeled by perfect fluids with

6Since B2 ∝ ðX2F2;½K� þ 2XF2;½K2� þ 3F2;½K3�Þ2 ðF1;½K� þ
2XF1;½K2� þ 3X2F1;½K3�Þ2, the case B2 ¼ 0 corresponds to the
self-accelerating case, which will be discussed in Appendix C.
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general equations of state. In this case though, we general-
ize the previous results to the case of an arbitrary number of
matter fields.
In particular, in terms of the gauge invariant variables

introduced in Eqs. (61)–(64), the matter equations of
motion for each matter component are the same as in
General Relativity, namely

_δI ¼ 3aðwI − c2sIÞHδI − ð1þ wIÞðθI − 3 _ϕÞ; ð73Þ

_θI ¼ aHð3c2sI − 1ÞθI þ k2ψ þ c2sIk
2

1þ wI
δI − k2σI; ð74Þ

where wI ≡ PI=ρI , and c2sI ¼ _pI=_ρI ¼ ð∂pI
∂ρI
Þ
s
is the speed of

propagation for each matter species. Here the subscript I
runs over all the standard matter components we consider.
The fact that in the matter sector we refined the same
equations of GR is not surprising, as the Lagrangians of
matter fields do satisfy general covariance.
We can proceed by solving EδλV for χ, Eα for E and Eχ

for δλ. Now the equation of motion EE can be written as

EE ¼ S1 _ϕþ S2ϕþ S3ψ þ
X
I

S4;I _δI þ
X
I

S6;IδI

þ
X
I

S8;I _θI þ
X
I

S10;IθI þ S12δλV ¼ 0; ð75Þ

where the S’s coefficients are functions of k and time.7 A
linear combination of EE and Eζ leads instead to

EEζ ¼ T1δλV þ T2ϕþ T3ψ þ
X
I

T4;IδI þ
X
I

T6;IθI

þ
X
I

T6;IσI ¼ 0; ð76Þ

which can be used to define δλV in terms of the other
variables. Finally the equation Eδλ leads to

Eδλ ¼ U1ϕþ
X
I

U2;IδI þ
X
I

U4;IθI ¼ 0: ð77Þ

Here, T’s and U’s are, once more, coefficients which
depend on k and time t. On considering the time derivative
of Eq. (77), namely _Eδλ, and replacing _ϕ, _δI and _θI with
those given by Eqs. (75), (73), and (74) respectively, we
arrive at the so-called “shear equation” for this theory. This
approach then leads to a structure of the equations of
motion which is analogue to the standard approach in
General Relativity. This is a consequence of the fact that
these theories do not add any new degree of freedom, i.e. no
new dynamical equation is necessary to determine new

fields (which do not exist in the first place), but still they
change the equations of motion for the linear perturbation,
e.g. by the fact that the coefficients S1;…;12 differ from the
ones in GR. So after all, a different phenomenology is
expected to take place in general, although the number of
degrees of freedom has not been changed.

V. PHENOMENOLOGICAL CRITERIA

So far the approach was totally general, and it can be
applied to general functions F1;2 and arbitrary matter
components. On the other hand, in order to give predictions
on the graviton mass from observational data, it is ideal to
have a well-motivated subclass of models with a finite
number of parameters. For this reason, in this section we
shall make a list of phenomenologically motivated criteria
to be imposed on the theory.

A. c2s = 0 at all times and Geff=GN → 1
at early times for pressureless fluids

In Sec. IV B we have computed the squared sound speed
c2s and the effective gravitational constant Geff for scalar
perturbations in the presence of a pressureless fluid. Based
on these considerations and the result of Sec. IV B, we can
divide the theories into the following three categories.
(1) The case Ξ1 ≠ 0. In this case, from the equation

of motion for λi, we find ζ ∝ E. Furthermore,
after removing all the auxiliary fields, we find
that Geff=GN ¼ 1þOð½k=ðaHÞ�−2Þ independently
of the model. Therefore, for this class of models,
the background dynamics will be modified, but the
behavior of the perturbations, in the short scales
regime, will not. This could be an interesting
possibility, but since, we are looking for theories
which can address a gravitational interaction weaker
than General Relativity, we will not discuss this
model further in this paper, but we will consider it as
a subject of investigation for a future project.

(2) The case Ξ1 ¼ 0, but Ξ2 ≠ 0. In this case, ζ ¼ 0, and
the matter perturbations acquire a nonzero speed of
propagation, namely c2s ≠ 0. This case will not be
discussed further as strongly constrained from a
phenomenological point of view.

(3) The case Ξ1 ¼ 0 ¼ Ξ2. In this case, ζ ¼ 0,
Geff=GN ¼AðtÞ=ZðtÞþOð½k=ðaHÞ�−2Þ, where AðtÞ
and ZðtÞ are expressions which only depend on time.
In general Geff=GN ≠ 1, but

lim
m=H→0

Geff

GN
¼ 1; ð78Þ

which leads to the standard evolution for matter
perturbations at early times.

Both c2s and Geff are important for the formation of the
large-scale structure in the universe. In GR, c2s for a

7The explicit form of the coefficients S1;…;12 are in general
quite lengthy, and not strongly illuminating. We will instead write
the explicit expressions of the observables when needed.
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pressureless fluid vanishes and this is consistent with
observations. If c2s is negative or too large then the
prediction of the theory would contradict with observa-
tions. Although a positive and sufficiently small c2s can in
principle be consistent, for simplicity we restrict our
considerations to the case with c2s ¼ 0 for the eMTMG.
In this case the effective gravitational constant controls the
behavior of scalar perturbations. Motivated by the fact that
the standard ΛCDM in GR fits the Planck data very well,
we demand that Geff=GN → 1 at early times. On the other
hand, at late times we would like to have deviation of
Geff=GN from unity. This is motivated by the recent tension
in the estimation of the parameter S8 between the Planck
2018 data and late time observations like KiDS and DES.
Hence, modifying the growth of structure formation may
address the S8 tension in cosmology. For these reasons, in
the rest of the present paper we study the third case above,
that is the case for which

Ξ1 ¼ 0 ¼ Ξ2: ð79Þ

B. Finite Geff=GN for ∀XðtÞ
One of the main motivations in this paper is to have

models for which Geff=GN never blows up during a general
evolution of XðtÞ and rðtÞ, keeping the theory safely in the
regime of validity of the effective field theory. This implies
that, on considering the quantity ZðtÞ, we need to impose
that it never vanishes for any dynamics of XðtÞ and rðtÞ,
assuming them to be all positive quantities.
If the expression for Geff=GN has poles for some real

value of X ¼ X∞, we could just make sure that during the
dynamics these values of X∞ should not be reached.
However, this might not be possible to predict in general.
For example in MTMG, this pole corresponds to a time for
which H2 ¼ H2

∞ ¼ μ2=2, where μ is the mass of the
graviton. This means that for MTMG we had to have that
H2

∞ < H2
0. However, well before reaching this pole, the

phenomenology of the theory was leading to inconsisten-
cies, see e.g. [37,45]. Therefore, just avoiding the poles
may not be enough to lead to a viable phenomenology.
Therefore, we want to find, if possible, a subset of theories
which, under this point of view, are always consistent.

C. Positive μ2 for ∀XðtÞ
Furthermore, we also impose that the squared mass μ2 of

the tensor modes remains finite and positive during a
general evolution of XðtÞ and rðtÞ.
As previously mentioned, in MTMG, a pole for Geff=GN

was reached when H2 ¼ H2
∞ ¼ μ2=2. Evidently this

pole can be removed provided that we impose μ2 < 0,
that is when the graviton has a negative mass squared.
What would this mean? In a cosmological scenario, this
would make tensor modes unstable. But this instability

would be reached when the energy of the graviton itself,

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2phys − jμ2j

q
is comparable to

ffiffiffiffiffiffiffiffi
jμ2j

p
, and as such

astrophysically produced gravitons will not show this
instability. Furthermore, such an instability would have a
typical time-of-instability of order of 1=

ffiffiffiffiffiffiffiffi
jμ2j

p
≃H−1

0 ,
which would become evident only in the future.
Nonetheless, in this paper we assume the tensor modes to

be nontachyonic. In this case we have to impose that during
the whole history of the universe μ2 ≥ 0. This condition is,
in general, independent of the absence of poles in Geff=GN ,
so we expect that they can be imposed simultaneously.

D. Finite ISW effect

There are other observables which still strongly influ-
ence the behavior of late time cosmology. In particular, here
we consider the following combination, whose time
derivative affects the ISW effect, namely

ψ ISW ≡ ϕþ ψ : ð80Þ

We demand that ψ ISW remains finite during a general
evolution of XðtÞ and rðtÞ.
In fact, the correlation between ISW and galaxy pertur-

bations usually sets strong constraints for modified gravity
models, in particular an anticorrelation signal is ruled out.
For example in MTMG, it was shown that the ISW-galaxy
correlation effect was one of the tightest bound the theory
had to pass, see e.g. [24,36,45,46]. As already stated above,
in order not to have strong constraints coming from this
observable, we demand the finiteness of ψ ISW and its time
derivative during the whole dynamics of the universe.
Doing so in principle should add new constraints, and as
such further reduce the possibilities for the model to exist.
However, as we shall see later on, at least for the case under
study the finiteness of Geff=GN turns out to be a sufficient
condition for the finiteness of the ISW observable.

VI. CONCRETE REALIZATION BASED
ON POLYNOMIAL ANSATZ FOR F1;2

In principle it should be possible to find the subclass
consisting of all theories that satisfy the phenomenological
criteria summarized in the previous section. However,
the analysis and the result are expected to be rather
complicated (if possible in practice). In this section we
therefore consider a simple ansatz for the functions F1;2 and
then impose the phenomenological criteria step by step.
Considering the fact that the original MTMG has

polynomial expressions for F1;2 in terms of their variables,
we therefore restrict our considerations to the case where
F1;2 are polynomials of their arguments. Furthermore, for
simplicity we truncate the polynomials at the sixth order in
Ki

j and Ki
j, respectively, as
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F1ðA;B;CÞ ¼ a3;111111A6 þ a3;11111A5 þ a3;1111A4 þ a3;111A3 þ a3;112A2Bþ a3;222B3 þ a2;11A2 þ 2a2;12AB

þ a3;122AB2 þ 2a2;13ACþ a2;22B2 þ 2a2;23BCþ a2;33C2 þ a1;1Aþ a1;2Bþ a1;3C

þ g1A4Bþ g2A2B2 þ g3A3Bþ g4A2Cþ g5A3Cþ g6ABCþ c4; ð81Þ

F2ðA;B;CÞ ¼ b3;111111A6 þ b3;11111A5 þ b3;1111A4 þ b3;111A3 þ b3;112A2Bþ b3;222B3 þ b2;11A2 þ 2b2;12AB

þ b3;122AB2 þ 2b2;13ACþ b2;22B2 þ 2b2;23BCþ b2;33C2 þ b1;1Aþ b1;2Bþ b1;3C

þ h1A4Bþ h2A2B2 þ h3A3Bþ h4A2Cþ h5A3Cþ h6ABC: ð82Þ

Essentially, as already stated above, the polynomials have
been chosen so as to be linear combinations of terms in the
form Ab1Bb2Cb3 , with the conditions that bi ∈ Nþ and
b3 ≤ 2. Then the other powers, b1;2, have been chosen so
that, on FLRW, once written as polynomials in X, which
can be grouped according to equal powers of X. For
example, the variable C in F1 will lead to a term X3, B
to X2 and A to X. Therefore, for instance, we allow terms in
C2; A3C;ABC;B3; A2B2; A4B; A6 which all lead to a term
proportional to X6, etc. Although this toy model is just
meant to be a proof-of-existence case, we will find that the
models satisfying the properties we are looking for all
behave in the same way on the FLRW background, so that
we believe the model can catch general properties of the
extended minimal models of gravity. Indeed, as we shall
see later on, further simplified subcases which are still
general enough in their dynamics will be found.
In the following we shall impose all phenomenological

criteria considered in the previous section step by step.

A. c2s = 0 at all times and Geff=GN → 1 at early times

Let us now impose the conditions on the parameters so
that c2s ¼ 0 at all times, thatGeff=GN → 1 at early times and
yet thatGeff=GN exhibits interesting deviation from unity at
late times. As discussed in Sec. VA, this amounts to
requiring that, for any X, we have Ξ1 ¼ 0 ¼ Ξ2. This will
select the models belonging to the third case mentioned
above. This condition fixes some constant parameters to
satisfy the following relations

a3;111111 ¼ −
7

135
a3;222 −

1

45
a2;33; ð83Þ

a3;11111 ¼ −
2

15
a2;23 −

7

45
a3;122; ð84Þ

a3;1111 ¼ −
4

9
a2;13 −

5

27
a2;22 −

4

9
a3;112; ð85Þ

a3;111 ¼ −
1

3
a1;3 −

10

9
a2;12; ð86Þ

a2;11 ¼ −a1;2; ð87Þ

with analogue relations holding for the b’s coefficients.

B. Finite Geff=GN for ∀XðtÞ
We now require that ZðtÞ never vanishes for any positive

XðtÞ and rðtÞ. Later we shall also impose the positivity of
μ2ðtÞ. Therefore, in this subsection we also assume that
μ2ðtÞ is also positive.
In order to simplify the expression for ZðtÞ, we first

replace _X on using the background constraint, Eq. (45). We
also replace _a in terms ofH,M in terms of r, N, X, and say
b3;222 in terms of μ2, by inverting Eq. (48). Then we find
that Z ∝ Z1ðtÞ2Z2ðtÞ2Z3ðtÞ2Z4ðtÞ2 (where the proportion-
ality factor is positive definite, by assumptions, being a
product of powers of H, r, X, a, N) and ZI (I ¼ f1;…; 4g)
are instead polynomial in powers of X, r and μ2. We
conservatively impose that each of the coefficients of such
polynomials have the same sign, so that each polynomial ZI
would never vanish. The expressions Z3;4 only set con-
straints on the a’s parameters, whereas Z1;2 also constrain
the b’s parameters. On considering only Z2;3;4 (Z1 being the
most complicated expression) then we find the following
constraints need to be satisfied

a1;1 ¼ −A2
1;1; A2

1;1 ≥ 0; ð88Þ

a1;2 ¼ A2
1;2 ≥ 0; ð89Þ

a2;12 ¼ −
1

2
a1;3 þ ξ2; ξ2 ≥ 0; ð90Þ

a2;22 ¼ −3a2;13 −
3

2
a3;112; ð91Þ

a2;23 ¼ −
3

4
a3;122 −

9

8
ðg3 þ g4Þ; ð92Þ

a2;33 ¼ −
3

2
a3;222 −

9

2
g1 − 3g2 −

9

2
g5 − 2g6; ð93Þ

b1;1 ¼ −B2
1;1; B2

1;1 ≥ 0; ð94Þ
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b1;2 ¼ B2
1;2 ≥ 0; ð95Þ

b2;12 ¼ −
1

2
b1;3 þ ζ21; ζ21 ≥ 0; ð96Þ

b2;23 ¼ −
3

4
b3;122 −

9

8
ðh3 þ h4Þ þ ζ23; ζ23 ≥ 0; ð97Þ

b2;13 ¼ −
1

3
b2;22 −

1

2
b3;112 þ ζ22; ζ22 ≥ 0: ð98Þ

It then turns out that these are sufficient conditions for
making also Z1 never vanish.

C. Positive μ2 for ∀XðtÞ
In this process we have assumed that μ2 is positive.

However, we have to make sure it is. In fact, we find that on
using the previous constraints, the squared mass for the
tensor modes can be rewritten as

μ2 ¼ −
1

2
m2B2

1;1rX
3 −m2ðrB2

1;2 þ A2
1;2ÞX2 −

1

2
m2A2

1;1X

þ 6m2rζ22 þ
12

X
m2rζ23 þ

54

5X2
m2rζ24; ð99Þ

where

b2;33 ¼ ζ24 −
3

2
b3;222 −

9

2
ðh1 þ h5Þ − 3h2 − 2h6; ð100Þ

so that we also need to impose

B1;1 ¼ 0; ð101Þ
B1;2 ¼ 0; ð102Þ
A1;2 ¼ 0; ð103Þ
A1;1 ¼ 0; ð104Þ
ζ24 ≥ 0; ð105Þ

or

μ2 ¼ 6m2r

�
ζ22 þ

2

X
ζ23 þ

9

5X2
ζ24

�
: ð106Þ

D. Finiteness of ISW effect

In the following, we show that the phenomenological
criteria so far are sufficient to guarantee the finiteness of the
ISWeffect. For this purpose we use the equations of motion
for scalar perturbations derived in Sec. IV C.
Since we are interested in the behavior of dust at late

times, we will consider only one single pressureless fluid
(modeling baryon and dark matter components). This leads
to having effectively only one kind of matter component,
for which the equations of motion reduce to

Eθ ¼ _δm þ θm − 3 _ϕ ¼ 0; ð107Þ

Eδρ=ρ ¼ _θm þ aHθm − k2ψ ¼ 0: ð108Þ

Also we consider the subset of the extended theories which
satisfy the conditions Ξ1 ¼ 0 ¼ Ξ2, and in particular the
model and the constraints we have found in the previous
section leading some coefficient to vanish, e.g. S12 ¼ 0, as
to have

EE ¼ S1 _ϕþ S2ϕþ S3ψ þ S10θm ¼ 0: ð109Þ
Instead, Eq. (76) reduces to

EEζ ¼ T1δλV þ T2ϕþ T3ψ þ T4δm þ T6θm ¼ 0; ð110Þ

which, as done before, can be used then to define δλV in
terms of the other variables. Finally the equation Eδλ

simplifies to

Eδλ ¼ U1ϕþ U2δm þ U4θm ¼ 0: ð111Þ

Now, on taking the time derivative of Eq. (111), we have

_Eδλ ¼ ðU1 þ 3U2Þ _ϕþ k2U4ψ þ _U1ϕþ _U2δm

þ ð _U4 −U2 − aHU4Þθm ¼ 0;

where we have replaced the time derivative of the matter
fields by using their own equations of motion. Then we can
build up the following combination of equations of motion

ES ≡ ðU1 þ 3U2ÞEE − S1 _Eδλ ¼ ½ðU1 þ 3U2ÞS3
− k2U4S1�ψ þ ½ðU1 þ 3U2ÞS2 − S1 _U1�ϕ
þ ½ðU1 þ 3U2ÞS10 − ð _U4 − U2 − aHU4ÞS1�θm
− S1 _U2δm ¼ 0: ð112Þ

From this last equation, ES ¼ 0, we find

ψ ¼ Fψ ðϕ; θm; δmÞ: ð113Þ
On substituting this expression into EE ¼ 0, we can solve
this equation for _ϕ as

_ϕ ¼ F _ϕðϕ; θm; δmÞ: ð114Þ

Then on replacing _ϕ in Eθ ¼ 0, we can solve it in terms of
θm, finding

θm ¼ Fθðϕ; δm; _δmÞ; ð115Þ
from which we also obtain

ψ ¼ Gψðϕ; δm; _δmÞ; ð116Þ
_ϕ ¼ G _ϕðϕ; δm; _δmÞ; ð117Þ
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_θm ¼ F _θðϕ; δm; _δm; δ̈mÞ: ð118Þ

Then on substituting these expressions inEδρ=ρ ¼ 0, we can
solve it for ϕ as in

ϕ ¼ Fϕðδm; _δm; δ̈mÞ; ð119Þ

which in turn can be used to set

ψ ¼ Iψðδm; _δm; δ̈mÞ; ð120Þ

θm ¼ Hϕðδm; _δm; δ̈mÞ: ð121Þ

Finally we can substitute these last expressions for ϕ and
θm into Eq. (111), Eδλ ¼ 0, in order to find a closed
differential equation for δm of the kind

δ̈m þ A_δm þ Bδm ¼ 0: ð122Þ

Once more, the reason why we can close the dynamical
equation of motion for δm is that the theory does not add
any new propagating degree of freedom in the scalar sector.
In the high-k regime the previous equation reduces to

δ̈m þ aH _δm −
3

2

Geff

GN
Ωma2H2δm ¼ 0; ð123Þ

whereΩm ¼ ρm
3M2

PH
2 and the concrete expression forGeff=GN

is shown inAppendixD. This differential equation for δm can
be used to replace δ̈m in terms of δm; _δm, so that any scalar
perturbation field becomes a function of δm; _δm only. The
result in this section for Geff=GN, following a different
method, agrees with the one of the previous sections, as
expected.8

At this point we have found that all the fields (except for
δm itself) can be written as linear combinations of δm and
_δm. In particular, we can find the following combination,
whose time derivative affects the ISW effect, namely

ψ ISW ≡ ϕþ ψ : ð124Þ
We find that in the high-k regime we have

ψ ISW ¼ −
3H2

0Ωm0

k2
Σ
δ

a
; ð125Þ

where Σ ¼ ΣðtÞ, limm=H→0 Σ ¼ 1 and its denominator
never vanishes for any dynamics of XðtÞ. The general
expression for this model is written in Appendix D.

E. General subclass

Finally, on putting together all the phenomenological
criteria, we find that the model can be rewritten as

F1 ¼ c4 þ
�
2

9
½K�3 − ½K�½K2� þ ½K3�

�
a1;3 þ

�
2½K�½K2� − 10

9
½K�3

�
ξ2 þ

�
1

9
½K�4 þ 2½K�½K3� − 3½K2�2

�
a2;13

þ
�
½K2�2½K� − 1

18
½K�5 − 3

2
½K2�½K3�

�
a3;122 þ

�
½K2�3 − ½K�6

54
−
3½K3�2

2

�
a3;222 þ

�
½K2�½K�4 − 5

18
½K�6 − 9

2
½K3�2

�
g1

þ
�
½K2�2½K�2 − 2

27
½K�6 − 3½K3�2

�
g2 þ

�ð4½K�3 − 9½K3�Þ½K2�
4

−
½K�5
4

�
g3 þ

�ð36½K�2 − 81½K2�Þ½K3�
36

−
½K�5
36

�
g4

−
ð½K�3 − 9½K3�Þ2g5

18
þ
�
½K2�½K3�½K� − 1

81
½K�6 − 2½K3�2

�
g6 −

ð½K�2 − 3½K2�Þ2a3;112
6

: ð126Þ

F2 ¼
�
2

9
½K�3 − ½K�½K2� þ ½K3�

�
b1;3 þ

�
−

1

27
½K�4 − 2

3
½K�½K3� þ ½K2�2

�
b2;22 þ

�
−
10

9
½K�3 þ 2½K�½K2�

�
ζ21

þ
�
2½K�½K3� − 4

9
½K�4

�
ζ22 þ

�
2½K2�½K3� − 2½K�5

15

�
ζ23 þ

�
½K3�2 − ½K�6

45

�
ζ24

þ
�
½K2�2½K�2 − 2

27
½K�6 − 3½K3�2

�
h2 þ

�ð4½K�3 − 9½K3�Þ½K2�
4

−
½K�5
4

�
h3 þ

�ð36½K�2 − 81½K2�Þ½K3�
36

−
½K�5
36

�
h4

þ
�
½K2�2½K� − 1

18
½K�5 − 3

2
½K2�½K3�

�
b3;122 þ

�
½K2�3 − ½K�6

54
−
3½K3�2

2

�
b3;222 þ

�
½K2�½K�4 − 5

18
½K�6 − 9

2
½K3�2

�
h1

þ
�
½K2�½K�2 − 2

9
½K�4 − ½K�½K3�

�
b3;112 −

ð½K�3 − 9½K3�Þ2h5
18

þ
�
−

1

81
½K�6 þ ½K2�½K3�½K� − 2½K3�2

�
h6: ð127Þ

8In particular, this result shows that δρ=ρ ¼ δm in the high-k regime. It can be proven that this same result holds also for another gauge
invariant combination, the comoving matter energy density defined as δv ¼ δρ=ρþ 3Hv, namely δρ=ρ ¼ δv.
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For this class of models we can see that

_X
NH

¼ 5ζ21X
3 þ 10ζ22X

2 þ 10ζ23X þ 6ζ24
5X4ξ2

r − X; ð128Þ

whose dynamics are always well defined. Note two things:
(1) a ΛCDM profile, i.e. X ¼ X0 ¼ constant, can always be
given for the background if necessary, and (2) on giving
XðtÞ, we find rðtÞ, or vice versa, on giving rðtÞ, one needs
to solve an ODE in order to find XðtÞ. It is interesting to
notice that the Friedmann equation can then be written as

3M2
PH

2 ¼
X
I

ρI þm2M2
Pðc4 − 6ξ2X3Þ; ð129Þ

2M2
P

_H
N

¼ −
X
I

ðρI þ PIÞ − 6M2
Pm

2ξ2
_X

NH
X2; ð130Þ

which simplify considerably. In this case the equation of
state parameter for the eMTMG component becomes

wg ≡ Pg

ρg
¼ 30ðX3ζ21 þ 2ζ22X

2 þ 2ζ23X þ 6
5
ζ24Þr − 5X2c4

5X2ðc4 − 6ξ2X3Þ ;

ð131Þ
ρg ≡m2M2

Pðc4 − 6ξ2X3Þ: ð132Þ
Also, as already mentioned, the general expression for
Geff=GN and Σ for this general subclass can be found in
Appendix D.

F. Simple subclass

We have obtained the general subclass of models in
Sec. VI E. On the other hand, since the observables, ρg,
Geff=GN , Σ and μ2GW depend only on ðc4; ξ; ζ1; ζ2; ζ3; ζ4Þ
among parameters in (126)–(127), we can pick up a simple
subclass as follows9

F1 ¼ c4 þ
�
2½K�½K2� − 10

9
½K�3

�
ξ2; ð133Þ

F2 ¼
�
2½K�½K2� − 10

9
½K�3

�
ζ21 þ

�
2½K�½K3� − 4

9
½K�4

�
ζ22

þ
�
2½K2�½K3� − 2½K�5

15

�
ζ23 þ

�
½K3�2 − ½K�6

45

�
ζ24;

ð134Þ

which has six free parameters instead of four for MTMG
(or dRGT model). This subset, at least on FLRW, is
sufficiently general in the sense that it catches the behavior
of a more general subclass of models presented in Sec. VI
E. In general, from a purely theoretical approach, by using
symmetries in the space of the functions (in fact, all of them
would still belong to the minimal set of theories) we find it
difficult to strongly restrict the allowed possibilities. Even
then, still the final theory might not have a nice phenom-
enology. On the other hand, in this paper, we have shown
that demanding for additional phenomenological consid-
erations (all aimed as to give “a good fit to the data”) has
proven a powerful way as to restrict the space of allowed
functions for both F1 and F2. The hope is that the real
theory (fully determined theoretically) might look like one
of these toy models.
In principle, one needs to be fitting all the free param-

eters of the model against the data, giving then predictions
on the graviton mass. We will study the possibly interesting
phenomenology for this theory in another separate paper.

VII. CONCLUSION

Nowadays, cosmology has reached an astonishingly
high level of understanding of our universe due to more
and more precise observations whose number also grows
more and more. However, these data seem to give us a
puzzling scenario regarding the dark sector of our universe.
This is not only due to the long-standing problem of
understanding the tiny value of the cosmological constant,
for which a complete theoretical explanation is still
unavailable. In fact, recent cosmological observations, as
they reached a percent level of precision (at least for some
of the experiments), show tensions and/or anomalies in the
estimation of cosmological parameters such as the z ¼ 0
Hubble expansion rate, H0, or the amplitude of matter
fluctuations S8 in the context of GR-ΛCDM. On the other
hand, the fact that GR has shown to be fully compatible
up to now with local gravity/astrophysical observations
(including the experiments concerning gravitational waves)
seems to leave little space to some deviations from it.
Therefore this scenario leads to doubts on the experiments,
or doubts on the analysis/interpretation of the data, or
doubts on the theoretical model used to fit the same data. In
particular, this third possibility opens up room for new
(gravitational) physics and motivates, for instance, the
study of various modified theories of gravity to address
these same tensions.
We have tried, as further explained later, to modify

gravity in this paper under the assumption that the graviton
has a nonzero mass. Indeed, giving a mass to the graviton is
a well-motivated scenario to consider. This issue has been
attracting the attention of several physicists, since the first
attempt by Fierz and Pauli, back in 1939 [21]. The full
nonlinear realization of massive gravity was accompli-
shed only very recently, which is now known as dRGT

9As we will see in Appendix C, the existence of the
self-accelerating branch requires that F1;½K� þ 2XF1;½K2� þ
3X2F1;½K3� ¼ 0, which for this subclass leads to imposing
12ξ2X2 ¼ 0, a solution which requires ξ ¼ 0. On the other hand,
we also need to impose X2F2;½K� þ 2XF2;½K2� þ 3F2;½K3� ¼ 0,
which is solved by setting the condition 5ζ21X

3 þ 10ζ22X
2þ

10ζ23X þ 6ζ24 ¼ 0. In this case then Geff=GN ¼ 1, and the
phenomenology reduces to the one of ΛCDM, except, in general,
for a nonzero value of the graviton mass.
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theory [25]. Although the theory of dRGT is a valid theory
for massive gravity, nonetheless it was proven that the
cosmology of this theory was plagued with instabilities
[27], as at least one (out of the five degrees of freedom) is a
ghost (whose mass is in general below the cutoff of the
theory). In [29] a new theory of massive gravity which was
constructed as not to have the unstable mode of dRGT
introduced. This theory, called “minimal theory of massive
gravity” (MTMG), is said to be minimal in the sense that, it
does not propagate any degrees of freedom other than the
gravitational waves, which, on the other hand, are massive.
This theory shows interesting phenomenology as it can
lower the value of fσ8 [45], since pressureless fluids can
feel weaker gravity, as the effective gravitational constant is
lower than the Newton constant, i.e. Geff < GN .
However, this modification of Geff in MTMG consists of

being a function of time with a pole at μ2=H2
∞ ¼ 2, with μ2

being the squared mass of the tensor modes in the theory
and H∞ being the value of the Hubble expansion rate at
which jGeff j → ∞, where the background is nonetheless
well defined and equal to ΛCDM. Then it is clear that the
theory breaks down (its description as a low-energy
effective theory), for H∞ > H0, i.e. μ2 ≥ 2H2

0, see e.g.
[37,45]. However, if μ2 < 0 the pole is never encountered,
andGeff remains a smooth function at all times. The price to
pay for this (in MTMG) is that the gravitational waves are
tachyon fields, possessing a negative, but tiny-squared
mass. This would lead to a tachyonic instability for them
which is only effective for graviton-kinetic-energy of order
H2

0 (not visible at astrophysical scales) and a time of
instability of orderH−1

0 . Therefore in MTMG, either we live
with tachyonic gravitational waves, or we have to avoid real
(and larger than H0) values for μ. This phenomena do limit
the phenomenological possibilities of the normal branch of
the original MTMG.
In this work, we extend the MTMG theory, motivated

by the previous phenomenological behavior, as to remove
the negative-squared mass behavior and, at the same time,
any poles in Geff . We impose these properties to be valid
at any time and for any background dynamics. By doing
this also other observables, such as the ISW field, will have
a smooth evolution. In order to define the eMTMG, we
first realize that the original MTMG was built as to have
the same cosmological background as dRGT. Then, we
allow the new class of theories to have a general graviton
mass term and not only the MTMG/dRGT-like one.
Afterwards, in order to have a theory with only tensor
degrees of freedom in the gravity sector, we implement
new constraints as to remove the unstable modes (already
present in dRGT). Now the eMTMG leads to a mass term
which consists of two functions: a function F1 of ½K�, ½K2�,
½K3�; and another function F2 of ½K�, ½K2�, ½K3� (where
½K�;…½K�;… depend on the three-dimensional metric γij
and a fiducialmetric γ̃ij). This choice naturally vastly expands
the phenomenology ofMTMG in general. After investigating

the background equations of motion, we have studied the
tensor mode perturbations, and found that the two polar-
izations of the gravitationalwaves acquire a nontrivialmass as
expected.
Later on, we impose the conditions mentioned above for

μ2 ≥ 0 and finiteness of Geff . We have found that this
model can lead to three possible different phenomenolo-
gies, which depend on two functions Ξ1 and Ξ2 which,
in turn, depend on F1;2 and their derivatives. In fact, we
find that if Ξ1 ≠ 0, then Geff ¼ GN (evidently MTMG
does not belong to this class). If instead Ξ1 ¼ 0 [or much
smaller than k2=ða2H2Þ] but Ξ2 ≠ 0, in general the speed of
propagation for each matter field will be modified. Finally
for the subclass of theories for which Ξ1 ¼ 0 ¼ Ξ2, matter
component has the standard speed of propagation, whereas
dust acquires a nontrivial Geff=GN . MTMG belongs to this
last class. For this last class we proceed to impose the
conditions μ2 ≥ 0 and Geff < ∞, and we give an explicit
example which satisfies these constraints at all times for
any background dynamics.
In this last case, the expression for Geff=GN is explicitly

given in Appendix D. It is interesting to notice that the mass
squared of the graviton could be vanishing, whereas
Geff ≠ GN . This is due to the fact that at linear level, the
contributions to Geff come from the would-be-unstable
propagating scalar mode of dRGT which in this minimal
theory is nondynamical and as such can be integrated out,
leading though to nonstandard modifications to the coef-
ficients of the linear perturbation equations of motion.
We have extended the study of finiteness to other linear

perturbation observables as to see how their late time
dynamics are affected. In particular, we have looked at the
observable which describes the ISW-galaxy correlation
effects. Indeed we find that imposing μ2 ≥ 0 and Geff < ∞
automatically leads to the absence of poles for such
observables.
The result of this work is interesting since it provides a

set of eMTMG which, like GR, leads to cosmological
observables which are always well defined, no matter
which dynamics the background might have. These
requirements can turn out to be crucial in a world which
has to deal with a weak gravity description of large-scale
gravitational interactions. We think these minimal models
could have an interesting phenomenology leading to new
possibilities for a massive graviton to play a nontrivial role
in our physical world.
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APPENDIX A: VARIATIONAL FORMULAS

We find it useful to write down some identities which are
to be used when we find the equations of motion of the
theory10

δKi
i ¼

1

2
Ki

jγ̃
jlδγli; ðA1Þ

∂tKi
i ¼

1

2
Ki

j
_̃γjlγli ¼ −MKi

jζ̄
j
i; ðA2Þ

δðKi
jKj

iÞ ¼ γ̃ijδγij; ðA3Þ

∂tðKi
jKj

iÞ ¼ _̃γilγli ¼ −2Mζ̄ijγ̃
jlγli; ðA4Þ

δðKi
jKj

kKk
iÞ ¼

3

2
Ki

jγ̃
jlδγli; ðA5Þ

∂tðKi
jKj

kKk
iÞ ¼

3

2
Ki

j
_̃γjlγli ¼ −3MKi

jζ̄
j
lγ̃

lkγki; ðA6Þ

where a δ represents the variation with respect to a
dynamical field, and ∂t the time derivative of the explicitly
time dependent fields.
Now let us turn our attention to the analogue properties

of the other squared-root matrix, namelyKi
j. Then we find

δKi
i ¼

1

2
Ki

jδγ
jlγ̃li ¼ −

1

2
Ki

jγ
klγ̃liγ

jmδγmk

¼ −
1

2
Ki

jγ
jkδγki; ðA7Þ

∂tKi
i ¼

1

2
Ki

jγ
jl _̃γil ¼ Mγ̃ijKi

lγ
klζ̄jk; ðA8Þ

δðKi
jKj

iÞ ¼ δγijγ̃ij ¼ −γijγ̃jlγlmδγmi; ðA9Þ

∂tðKi
jKj

iÞ ¼ 2Mγijγ̃jlζ̄
l
i; ðA10Þ

δðKi
jKj

kKk
iÞ ¼

3

2
Ki

jγ̃liδγ
jl ¼ −

3

2
Ki

jγ̃liγ
mlγjkδγkm;

ðA11Þ

∂tðKi
jKj

kKk
iÞ ¼

3

2
Ki

jγ
jl _̃γli ¼ 3MKi

jγ
jlγ̃lmζ̄

m
i: ðA12Þ

APPENDIX B: MTMG SUBCASE

In the theory of MTMG, a subclass of the eMTMG, we
have for the precursor part of the Lagrangian the following
structure

LMTMG ∋
m2M2

P

2
N½−c1

ffiffiffĩ
γ

p
− c2

ffiffiffĩ
γ

p ½K�− c3
ffiffiffi
γ

p ½K�− c4
ffiffiffi
γ

p �

¼−
m2M2

P

2
N

ffiffiffi
γ

p �
c1

ffiffiffĩ
γ

p
ffiffiffi
γ

p þ c2½K�
ffiffiffĩ
γ

p
ffiffiffi
γ

p þ c3½K� þ c4

�
;

ðB1Þ

where, by definition

Ka
bKb

c ¼ γabγ̃bc;

½K� ¼ ½K−1�

so that

detðKÞ2 ¼ γ̃

γ
;

ffiffiffĩ
γ

p
ffiffiffi
γ

p ¼ detðKÞ; ðB2Þ

supposing that detðKÞ > 0. By using the Cayley-Hamilton
(CH) theorem11 we have

½K3� − ½K�½K2� þ 1

2
ð½K�2 − ½K2�Þ½K� − 3 detðKÞ ¼ 0;

ðB3Þ

so that

detðKÞ ¼ 1

3
½K3� − 1

2
½K�½K2� þ 1

6
½K�3: ðB4Þ

We also have from the CH theorem that:

½K2� − ½K�2 þ 3

2
ð½K�2 − ½K2�Þ − detðKÞ½K� ¼ 0; ðB5Þ

and

½K� detðKÞ ¼ 1

2
ð½K�2 − ½K2�Þ: ðB6Þ

Since

10In the following we will make use of the identity
δfTr½ ffiffiffiffi

X
p

n�g ¼ n
2
Tr½ ffiffiffiffi

X
p

n−2δX�.

11For a three-dimensional matrix, A, one has:

A3 − trðAÞA2 þ 1

2
½ðtrAÞ2 − trðA2Þ�A − detðAÞI3 ¼ 0;

out of which we can take the trace or multiply it by A−1 to find
new useful relations.
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LMTMG ∋ −
m2M2

P

2
N

ffiffiffi
γ

p ½c1 detðKÞ þ c2½K� detðKÞ
þ c3½K� þ c4�; ðB7Þ

we have that for MTMG:

FMTMG
1 ¼ c1

�
1

3
½K3� − 1

2
½K�½K2� þ 1

6
½K�3

�

þ 1

2
c2ð½K�2 − ½K2�Þ þ c3½K� þ c4: ðB8Þ

Along the same lines one finds

LMTMG ∋
m2M2

P

2
M½−c1½K�

ffiffiffĩ
γ

p
−
1

2
c2

ffiffiffĩ
γ

p
ð½K�2 − ½K2�Þ

− c3
ffiffiffi
γ

p �

¼ −
m2M2

P

2
M

ffiffiffĩ
γ

p �
c1½K� þ 1

2
c2ð½K�2

− ½K2�Þ þ c3

ffiffiffi
γ

p
ffiffiffĩ
γ

p
�
; ðB9Þ

where

Ka
bKb

c ¼ γ̃abγbc; ðB10Þ

so that

detðKÞ2 ¼ γ

γ̃
; ðB11Þ

or

ffiffiffi
γ

p
ffiffiffĩ
γ

p ¼ detðKÞ; ðB12Þ

supposing that detðKÞ > 0. Then on using once more the
CH theorem one finds

detðKÞ ¼ 1

3
½K3� − 1

2
½K�½K2� þ 1

6
½K�3; ðB13Þ

and, finally, that

FMTMG
2 ¼ c1½K� þ 1

2
c2ð½K�2 − ½K2�Þ

þ c3

�
1

3
½K3� − 1

2
½K�½K2� þ 1

6
½K�3

�
: ðB14Þ

APPENDIX C: SELF-ACCELERATING BRANCH

Let us once more consider the nontrivial constraint
equation Eq. (45), that we rewrite here for later convenience

H
M
N
ðX2F2;½K� þ 2XF2;½K2� þ 3F2;½K3�Þ

¼
�
_X
N
þHX

�
ðF1;½K� þ 2XF1;½K2� þ 3X2F1;½K3�Þ: ðC1Þ

We can define a self-accelerating branch for these extended
minimal models, as the solution of this constraint which
does not fix the ratio M=N. For this to happen we require

X2F2;½K� þ 2XF2;½K2� þ 3F2;½K3� ¼ 0; ðC2Þ

which is an algebraic equation for X. In particular, this
equation implies that X ¼ X0 ¼ constant. Since, from our
assumptions X0 ≠ 0, in general, Eq. (C1) also leads to

F1;½K� þ 2XF1;½K2� þ 3X2F1;½K3� ¼ 0: ðC3Þ

Vice versa, if we assume Eq. (C3) holding true, then since
we assume that HM=N does not vanish, we are left to
impose that also Eq. (C2) needs to be satisfied. Then both
Eqs. (C2) and (C3) must hold at the same time, meaning
that X0 has to be a solution for both these equations. In this
case, we will name this possibility as the self-accelerating
solution. This solution might not exist for all possible F1;2

functions, but there will be subclass of theories admitting
its presence. In particular MTMG is one of them.
For the self-accelerating branch, as defined here, we

find that both the background and the scalar/vector linear
perturbation equations behave exactly as in General
Relativity, and in particular, 1

2
M2

Pm
2F1 reduce to an

effective cosmological constant contribution to the total
matter sector. In summary, for this solution, all the
phenomenology (up to linear perturbations in cosmology)
coincide with GR except for the tensor modes which
acquire a nonzero mass (possibly time dependent).

APPENDIX D: FULL EXPRESSION OF Geff=GN

In the following we give a full expression for Geff=GN
which can be written as
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Geff

GN
¼ 1

Δ

�
−6750ξ2X3

�
X3ζ21 þ 2X2ζ22 þ 2Xζ23 þ

6

5
ζ24

��
X5ξ2 − X3rζ21 − 2X2rζ22 − 2Xrζ23 −

6

5
rζ24

�

×

�
X3ζ21 þ

8

3
X2ζ22 þ

10

3
Xζ23 þ

12

5
ζ24

�
m4 þ 3375H2m2

�
ξ2ζ41

�
Ωm þ 2

3

�
X11 þ 14ζ22ξ

2ðΩm þ 6
7
Þζ21X10

3

þ 16½ðΩm þ 4
3
Þζ42 þ ζ21ζ

2
3ðΩm þ 5

6
Þ�ξ2X9

3
þ
��

12

�
Ωm þ 14

9

�
ζ23ζ

2
2 þ

18ζ24ðΩm þ 2
3
Þζ21

5

�
ξ2 −

8rζ41ζ
2
2

9

�
X8

þ
��

8ζ24

�
Ωm þ 8

5

�
ζ22 þ

20ζ43ðΩm þ 2Þ
3

�
ξ2 −

8rζ21ðζ21ζ23 þ 6ζ42Þ
9

�
X7

þ
�
44ðΩm þ 74

33
Þζ24ξ2ζ23

5
−
128rζ22ðζ21ζ23 þ ζ4

2

2
Þ

9

�
X6 −

144rðζ21ζ44 þ 260
27

ζ22ζ
2
3ζ

2
4 þ 250

81
ζ63ÞX3

25

þ
�
72ζ44ξ

2ðΩm þ 8
3
Þ

25
−
128ðζ21ζ22ζ24 þ 5

4
ζ21ζ

4
3 þ 10

3
ζ42ζ

2
3Þr

15

�
X5 −

224rðζ21ζ23ζ24 þ 9
7
ζ42ζ

2
4 þ 55

21
ζ22ζ

4
3ÞX4

15

−
512r

�
ζ22ζ

2
4 þ 15ζ4

3

8

�
ζ24X

2

25
−
704Xrζ23ζ

4
4

25
−
864rζ64
125

�

þ 10H4X2ð15X3ζ21 þ 40X2ζ22 þ 50Xζ23 þ 36ζ24Þ2
�
; ðD1Þ

Δ≡ 2250X2

�
X3ξ2

�
X3ζ21 þ 2X2ζ22 þ 2Xζ23 þ

6

5
ζ24

�
m2 þH2ð15X3ζ21 þ 40X2ζ22 þ 50Xζ23 þ 36ζ24Þ

15

�
2

; ðD2Þ

where we can explicitly see that the denominator Δ never vanishes. We give in the following the general expression for Σ,
defined in Eq. (125), which can be written as

Σ ¼ 1

2

Geff

GN
þ H2ð15X3ζ21 þ 40X2ζ22 þ 50Xζ23 þ 36ζ24Þ
30X3ξ2ðX3ζ21 þ 2X2ζ22 þ 2Xζ23 þ 6

5
ζ24Þm2 þ 2H2ð15X3ζ21 þ 40X2ζ22 þ 50Xζ23 þ 36ζ24Þ

; ðD3Þ

which never blows up to infinity for any dynamics of XðtÞ, and still reduces to unity when m=H → 0, i.e. at early times.

APPENDIX E: CASE WITH MASSLESS GRAVITATIONAL WAVES

For the special symmetric12 model ζ2 ¼ ζ3 ¼ ζ4 ¼ 0, the tensor modes become effectively massless on the FLRW
background, for any XðtÞ. It is interesting to note that even if μ2 vanishes, still we might have nontrivial dynamics in the
scalar sector as

Geff

GN
¼ 1 − 3ξ4Y2X6 þ 3X3ðXYrζ21 þ Ωm

2
þ 1

3
ÞYξ2

ðYξ2X3 þ 1Þ2 ; Y ≡ m2

H2
; Ωm ≡ ρm

3M2
PH

2
; for ζ2 ¼ ζ3 ¼ ζ4 ¼ 0; ðE1Þ

which can be still less than unity (but positive) today.
The background function Σ defined in (125) and shown in Appendix D reduces to

Σ ¼ 2 − 3ξ4Y2X6 þ 3X3YðXYrζ21 þ Ωm
2
þ 2

3
Þξ2

2ðYξ2X3 þ 1Þ2 ; Y ≡ m2

H2
; Ωm ≡ ρm

3M2
PH

2
; for ζ2 ¼ ζ3 ¼ ζ4 ¼ 0: ðE2Þ

Here, we have mentioned this choice for the parameters only as to give already a nontrivial example despite vanishing
mass for gravitational waves. In the rest of the present paper we shall mainly consider the more general cases, i.e. those
shown in Sec. VI E or VI F, with massive gravitational waves.

12We name it “symmetric” as in this case Eqs. (133) and (134) mirror each other (a cosmological constant in the fiducial sector can
always be added without modifying any bit of the theory).
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