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In this work, we introduce a class of extended minimal theories of massive gravity, without requiring
a priori that the theory should admit the same homogeneous and isotropic cosmological solutions as the de
Rham-Gabadadze-Tolley massive gravity. The theory is constructed as to have only two degrees of freedom
in the gravity sector. In order to perform this step we first introduce a precursor theory endowed with a
general graviton mass term, to which, at the level of the Hamiltonian, we add two extra constraints as to
remove the unwanted degrees of freedom, which otherwise would typically lead to ghosts and/or
instabilities. On analyzing the number of independent constraints and the properties of tensor mode
perturbations, we see that the gravitational waves are the only propagating gravitational degrees of freedom
which do acquire a nontrivial mass, as expected. In order to understand how the effective gravitational force
works for this theory we then investigate cosmological scalar perturbations in the presence of a pressureless
fluid. We then restrict the whole class of models by imposing the following conditions at all times: (1) it is
possible to define an effective gravitational constant, G; (2) the value G/Gy is always finite but not
always equal to unity (as to allow some nontrivial modifications of gravity, besides the massive tensorial
modes); and (3) the square of mass of the graviton is always positive. These constraints automatically make
also the ISW-effect contributions finite at all times. Finally we focus on a simple subclass of such theories,

and show they already can give a rich and interesting phenomenology.
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I. INTRODUCTION

In these last years, we have witnessed a boom for the
research in gravity both from theoretical and experimental
sides. In particular, the discovery of gravitational waves has
paved the ground for a long research path which will lead to
a deeper understanding of several new aspects of gravity
[1]. On one side this will affect largely astrophysics, in
particular the research aimed to understand the dynamics of
the final states of stars in strong gravity regimes. On
another end, a large sample from the detected gravitational
waves seems to be coming from the merger of two black
holes: the values for the masses of the black holes involved
in these phenomena seem to be pointing either to nontrivial
astrophysical sources or even to the existence of primordial
black holes, which could be forming at least part of the dark
matter content [2].

From an observational point of view, having a larger
sample of neutron star mergers will also give us a link to
cosmology, since the sources of the signals could be located
in a far away galaxy, leading to a propagation of the
gravitational waves over a cosmological distance [3]. In
particular, this branch of the gravitational wave science
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should help us understand the nature of the so-called H|,
tension [4,5]. As a matter of fact, the high redshift CMB
data including Planck [6] as well as Atacama Cosmology
Telescope (ACT) [7], and the late time data, SHOES [8] do
not agree with each other in the context of ACDM, the “de
facto” standard model of gravity. This tension could point
either to new physics or to some unexpected and nontrivial
systematic errors in the data, and the gravitational waves
discoveries should help in confirming or ruling out this last
hypothesis.

If this situation is not already surprising in cosmology,
still another observable in the data related to the growth of
structure, the amplitude of the fluctuation Sg during matter
domination up to now, seems to be again showing poor
agreement between early time data (Planck [6]) and late-
time large scale structures [9,10], once more in the context
of the ACDM model. These two tensions open up room for
exploring models of the Universe beyond the ACDM, for
example by modifying gravity at large scales [11-13]. See
[5] for a review of possible solutions to the Hubble tension.

There have been several attempts to try to reconcile data
and theory at the cost of introducing new degrees of freedom,
which could change the dynamics of the cosmological

© 2022 American Physical Society
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background and matter perturbation needed to solve the
above mentioned puzzling tensions [12-16]. What is sur-
prising though is that at local scales (e.g. solar system scales)
there is no trace of such additional degrees of freedom which
would be necessary to fix the cosmological issues [17]. One
then needs to address how to hide existing new degrees of
freedom in environments with energy scales much higher
than the cosmological ones [18-20].

However, a more minimal approach, and possibly a
simpler one, is to give a nonzero mass to the graviton [21].
If the mass, yu, of such a mode is small enough, i.e.
comparable to the size of today’s Hubble expansion rate
(u ~ 10733 eV), then for the typical energy scales present in
astrophysical environments, the graviton would typically
be largely ultrarelativistic avoiding in this way the con-
straints on y coming from the propagation of gravitational
waves, which is u < 1072 eV [22]. Even though the
graviton mass is negligible at very short scales (i.e. solar
system scales), on cosmological scales things could be
different. In fact, the theory leading to a nonzero graviton
mass could be becoming sensibly different from ACDM at
late times, when H ~ u. This theory could also be respon-
sible for an apparent modified gravity behavior in cosmol-
ogy which could be affecting both the background and
cosmological perturbations, being able in this way to
address both the above mentioned tensions [23,24].

Is this an interesting idea or nothing but a theorist-wild-
dream scenario? In fact, the question of a nonzero mass for
the graviton was posed a long time ago and first partially
addressed by Fierz and Pauli [21]. Partially, because they
studied a theory of massive gravity only in a perturbative
regime, i.e. without knowing the theory in full, in any
nonperturbative regime. Only quite recently, a theory of
massive gravity which is totally consistent with a theoretical
point of view was introduced, which is dubbed as
de Rham-Gabadadze-Tolley (dRGT) theory [25,26]. This
breakthrough led to an exploration of the phenomenology for
such a theory, but it was realized that this model, at least in the
simplest approach, could not have well-defined cosmologi-
cal behavior [27,28]. By a beyond-linear-perturbation analy-
sis around a homogeneous and isotropic background, it was
found that at least one (out of five) of the graviton degrees of
freedom would be a (light) ghost and as such would make
dRGT lose its ability to make predictions [27].

Although this result might look disappointing, this negative
result has led to several other possibilities. One of them
consisted of introducing terms which break Lorentz invari-
ance, in order to remove unwanted (unstable) degrees of
freedom. Along these lines of research, a model called
minimal theory of massive gravity (MTMG) was introduced
as to resolve the issue of dRGT on a cosmological background
[29]. In particular MTMG, by construction, removes three
(out of five) graviton degrees of freedom in a nonlinear way,
leaving tensor modes as only propagating degrees of freedom
on any background. The theory has been proved to be

interesting and led to a nontrivial phenomenology discussed
even recently in the literature [23,24,30]. Along the same
lines, MTMG was extended as to have a scalar field
in the gravity sector (in addition to the massive graviton)
[31-33], and even to a minimal theory of bigravity (MTBG)
[34]. It should be noted that in MTMG by construction we
remove all gravity modes but the transverse-traceless gravi-
tational waves. This was necessary as in Lorentz invariant
massive gravity theories, although Vainshtein mechanism
works at screening the extra modes on short scales, still
homogeneous and isotropic manifolds, at least in dRGT,
possess a nonlinear light ghost, which makes standard
cosmology pathological [27].

Besides the requirement for the minimal number of
propagating degrees of freedom, MTMG has been con-
structed so as to admit the same homogeneous and isotropic
cosmological solutions as in dRGT, for which there are two
branches of solutions: the self-accelerating branch and the
normal branch. In the self-accelerating branch the graviton
mass term acts as an effective cosmological constant that
can accelerate the expansion of the universe [35] while
the linear perturbations behave exactly the same as the
standard ACDM, except that gravitational waves acquire a
nonvanishing mass. Unlike dRGT, the self-accelerating
branch of MTMG is free from fatal instabilities and thus
provides a firm testing ground for gravitational wave
physics of massive gravity. However, from the viewpoint
of recent tensions in cosmology, this branch of MTMG is
as good as but not better than ACDM. In this respect the
normal branch of MTMG could perform better than
ACDM. Indeed, in the normal branch of MTMG the scalar
linear perturbations behave differently from ACDM.

Although the normal branch of MTMG has proved to be an
interesting possibility as to try to modify gravity at large scales
in a consistent and minimal way, still it had some features
which were setting some theoretical and phenomenological
issues. In particular, MTMG was leading to a modified
effective Newtonian gravitational constant which at large
scales behaves as Ggyz/Gy o (u>/H? —2)72 [30]. This
expression for G./Gy is well behaved for negative-
squared-mass for the graviton (for which, though, a tachyonic
instability, with a timescale of order H; I would be affecting
modes of order k/(ayH,) ~ 1) [36]. But for a large-enough
positive-squared-mass graviton (that is still inside the allowed
Ligo bounds), a range of positive y?, for u ~ 2H,, would lead
to strong modifications to G /Gy, leading in turn to strong
constraints from the data even at nonlinear scales [37]. In
particular, in a recent paper, on studying the effect of Planck
data on MTMG, it was discovered that positive y? is actually
preferred but because of the above mentioned behavior of
G./Gy, p2, it is strongly constrained toward values very
close to zero [24]. This phenomenon puts strong limits on the
normal branch of MTMG.

In this paper, we try to solve these issues of the normal
branch of MTMG by extending the MTMG itself, in a way
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which is meant to cure the above mentioned behavior of
Git/Gy. In order to extend MTMG we still need to add
constraints to the Hamiltonian of a precursor theory as to
remove the unwanted degrees of freedom, but we change
the constraints themselves. One of the constraints of
MTMG was chosen as to admit exactly the same cosmo-
logical background as dRGT. As mentioned above, this
constraint defining MTMG was leading to the presence of
two branches for the background dynamics. On the other
hand, the extended MTMG (eMTMG) has in general a
different background dynamics from dRGT, especially if
these same modifications/extensions lead to a better
behaved phenomenology. Indeed, eMTMG allows for a
much larger freedom in terms of background dynamics,
still being a minimal theory (i.e. with only two tensor
propagating degrees of freedom on any background).
However, as we shall see later on, the condition that on
any allowed cosmological background G.¢/Gy will never
have poles and u? being non-negative, will considerably
reduce the set of allowed theories. Still, we give a proof of
existence of a large class of models which indeed satisfy
these criteria (and which by construction does not reduce to
dRGT at the background level). We also show that at the
level of the background and linear perturbations, all pre-
dictions of the models in this class are captured by a smaller
subclass of eMTMG with only six parameters, which
determine the cosmological constant and the behavior of
po and G o/ Gy. One of the parameters, ¢4, Which we will
see later on, is equivalent to the cosmological constant in the
ACDM model. The other five are completely new which
affects both background and perturbation.

As was happening in MTMG, for environmental den-
sities much larger than the present cosmological ones, that
is p> M3}H3 (valid at solar system scales and at high
redshifts) we find that G./Gy — 1.

This paper is organized as follows. Section II shows the
construction of the eMTMG, where we introduce two
general functions, | and F,, for which we make use of
the Cayley-Hamilton theorem. In particular, after writing
down a precursor theory, we add constraints to make the
theory minimal, in the sense that no additional degrees of
freedom are propagating in the gravitational sector besides
the gravitational waves, which become massive. Then, in
Sec. III, we study the spatially flat, homogeneous and
isotropic cosmological background in this theory. Here,
using the minisuperspace Hamiltonian and the constraints,
we show that one of the Lagrange multipliers A(¢) vanishes
in the spatially flat, homogeneous and isotropic back-
ground. Unlike the original MTMG, the space of solutions
is not separated into two branches: the self-accelerating
branch and the normal branch, rather there is one and only
one universal branch. While in Appendix C we consider the
condition under which the separation into the two branches
occurs, in the rest of the present paper we study the general
case. In Sec. IV, we study linear perturbations around the

spatially flat, homogeneous and isotropic background in
this theory. We first consider the propagation of the
gravitational waves on the cosmological background. As
expected, the two modes are now massive. Subsequently,
we derive the expression for the G.s/Gy considering the
eMTMG minimally coupled with a pressureless fluid.
Furthermore, we derive equations of motion for scalar
perturbations in the presence of multiple perfect fluids with
general equations of state. In Sec. V we then make a list of
phenomenologically motivated criteria to be imposed on
the theory, which makes it possible for us to find a subset of
models with a finite number of parameters. In particular, we
require the finiteness at any redshift of G./Gy which is
modified in anyway at late times, i.e. without altering the
early time dynamics. In addition, we impose the condition
that the squared mass of the gravitational waves is positive,
i.e. u> > 0. We also demand the finiteness of the ISW effect
at any redshift. In order to give a working example for
such a theory, which is nonetheless endowed with the
desired features of the general model, in Sec. VI we adopt a
simple polynomial ansatz for F,, and impose the phe-
nomenological criteria explained above step by step. As a
consequence, we obtain a rather simple subclass of the
general model which satisfies all the criteria. It turns out that
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FIG. 1. This figure shows relations among different subclasses
of the eMTMG and the original MTMG. The classification has
been made according to two scalar quantities which determine the
phenomenology of G.. Other criteria for the classification can
be in principle considered. The region where phenomenological
criteria (V A=V D) are satisfied determines a class of models with
appealing phenomenological properties, e.g. G/ Gy is finite for
any dynamics of the cosmological background, the tensor
graviton has a non-negative mass squared, etc. Finally it is
possible to give a simple subset (having at most six free
parameters) which already possesses all the defining properties
of the model. The quantities E; and =, are defined in Egs. (66)
and (67) respectively. The quantity E;, which depends on the
function F,, discriminates the behavior of the theory in the high-k
regime. Also the quantity =,, the mirror quantity for the function
F|, has a strong influence on the phenomenology of the theory.
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at the level of the background and the linear perturbations, all
observables within this subclass depend only on six param-
eters while F| , depend on more parameters. We thus remove
this degeneracy by defining a further simpler subclass, by
picking up the model for F; , which only shows the above-
mentioned six free parameters, i.e. five more than ACDM.
Finally, we report our conclusion in Sec. VII. Figure 1
summarizes the results. We find it useful to add five
appendices to the main text. Appendix A shows some useful
variational formulas needed for the construction of the
theory. In Appendix B we discuss the original MTMG as
a special case of this eMTMG. In Appendix C we consider
the condition under which the space of spatially flat,
homogeneous and isotropic solutions of the eMTMG is
divided into two branches, the so-called self-accelerating
and normal branches. In Appendix D, we provide the full
expression for G.¢/ Gy and the ISW potential field. Finally,
Appendix E discusses a rather peculiar model having
massless tensor modes (on the cosmological background),
with nontrivial dynamics for the scalar perturbations,
ie. Geff/GN ?E 1.

II. MODEL CONSTRUCTION
A. Building blocks

In order to build up the model, we will follow a path
which is similar to the one followed in [29,30]. First of all,
in the following, we will make use of the unitary gauge and
the metric formalism." In the unitary gauge we introduce a
three-dimensional fiducial metric with positive definite
signature, which is, by construction of the theory, an
external, explicitly time (and time only) dependent field,
that we denote by 7,;(¢). In the unitary gauge we will also
introduce another external field, M, that we call fiducial
lapse function. In order for the theory to allow spatially flat,
homogeneous and isotropic solutions, we require the
fiducial sector to be compatible with the symmetry of such
solutions. For this reason we will identify 7;; = a(1)*5;;
and M = M(t), where a(t) is the fiducial scale factor.
This three-dimensional fiducial metric admits an inverse,
denoted by 7, which satisfies 77, = &';. Out of these
external fields, we can also define the following field ¢ ‘i as

_. 1 ..
— ~ils

¢ iz m]’ Vi (1)
which describes the rate of change of the fiducial metric.”
Notice that in the unitary gauge description, having the

'Using the unitary gauge, although not strictly necessary, turns
out to be simplifying the calculations. As for the choice of the
metric formalism, one could equivalently choose the vielbein
formalism to define the theory, as done in [29,30]. .

In the vielbein formalism we instead define {'; = ﬁE" AEA s
where 7;; = 843 EEB ;, giving &'; = 1 (&' + 7% 7;;.), which in
any case agree with each other when 7;; = Zzzéij.

presence of the external fields which required a full
coordinate choice, will explicitly break four-dimensional
diffeomorphism, and a choice of slicing has been auto-
matically fixed.

Of course, we also have physical, dynamical metric
variables, which we adopt from the ADM formalism. In
particular we have a lapse function N, a shift vector N and
a three-dimensional metric y;;, which admits the inverse y*/.
Out of them, the four-dimensional physical metric can be
written as

Gudx'dx’ = —N2di* + y;;(dx' + N'dt)(dx/ + N/dt). (2)

Having introduced the dynamical field y;; and the external
field 7;;, which in unitary gauge have fixed, given dynam-
ics, we can introduce the building blocks of the theory K';
and &'; which satisfy the following properties

,Cillclj = 77”}’1/', (3)
KK =7y, (4)
}Cilﬁlj = 611 == Rillclj. (5)

Some useful formulas for the variations of the quantities
defined above are summarized in Appendix A.

B. Precursor Hamiltonian

We now have all the required building blocks to define
the theory, and we will do so by writing down its
Hamiltonian density, and then via a Legendre transforma-
tion, we will find its Lagrangian density. Then, along the
same lines of MTMG, see e.g. [30], we first introduce a
precursor Hamiltonian density, which we now define to be

1
Hype = =NRE® = N'R; + 5 m*MN /7 F (K], [82],

1 =
[&7]) +§m2M%MﬁF2([’CL K21 1)), (6)
where

M 2 1
RER = TP VIR - M2 \/77<711<}’jz - 57,171{1) 7k, (7)
R;= 2\/777ijDkﬁ'jkv (8)

ij

ai="" (9)

and [K] = K';, [K*] = K';K;, etc. Here we point out that
the fields N and N’ have been considered to be Lagrange
multipliers, whereas the dynamical degrees of freedom
enter in the six independent components of y;;, which

lead, in turn, to twelve phase space variables, since 7'/
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correspond to their conjugate momenta. Here the operator
D; represents the covariant derivative compatible with the
three-dimensional metric y;;.

By looking at Eq. (6), the precursor theory is defined in
terms of two functions F'; ,, which depend on the trace of
powers of the above defined building blocks K'; and &';.
Making use of the Cayley-Hamilton theorem applied
to a three-dimensional matrix, e.g. &;, we only choose
[R], [82],[K7] as the variables out of Wthh the function
F, depends on. Also by the same theorem, the mirror
variables [K], [K?], K] can be rewritten in terms of the
previous [K], [K2], [K?] variables, which become the really
independent ones. Therefore, on looking at the precursor
Hamiltonian, we can further define the following two
quantities

Ro = RG — S mM3 7, (18 (82, (7)), (10)

H, :%szl%/chM\/Fz 1 2L IC3). (1)
Indeed, for this precursor theory, the four Lagrange
multipliers N and N set four constraints, whereas H 1
corresponds to the Hamiltonian of the precursor theory
evaluated on the constraint surface (on which R, and R;
all vanish). One can then evaluate the time derivative of
the constraints R, and R;. As for R, we would find
Ry = —Ni{Ry,R;} + - - -, which needs to vanish on the
constraints surface. However the Poisson brackets
{Ro.R;} do not all vanish, then setting R~ 0, would
actually fix one of the Lagrange multipliers without
imposing any new constraint on the theory. Indeed,

|

oR.
= {Ro.Hi} +-5°

since the rank of {Ry, R;} is two, not all the eight
Ry, Ri, RO, Ri are constraints, but only six of them.
This means that this theory has (12 — 6) = 3 degrees of
freedom, where twelve represents the number of inde-
pendent components of y;; and their conjugate momenta
in the phase space.

The precursor theory we have considered consists of
three degrees of freedom. These are the two polarizations
of the transverse-traceless gravitational waves and the
other one is an additional mode: it is a scalar on a
homogeneous and isotropic manifold. Our idea, to be
studied in detail in the next subsection, is to remove the
scalar mode by adding additional constraints to the
precursor theory.

By using the Stiickelberg trick, we will be seeing that
one of them (or better a gauge invariant combination of
fields) corresponds to the extra scalar mode which we
want to remove. We shall not study the properties of this
extra mode since it does not exist in the minimal theories.

C. Hamiltonian of the extended minimal theory
of massive gravity

From what we have learned in the previous section, we
still need to add two new constraints as to make the theory
minimal, i.e. having only two propagating degrees of
freedom in the gravity sector. In order to achieve this
goal, we can follow the same steps of MTMG as to make
the theory minimal. Let us use the on-shell precursor
Hamiltonian H, as to define the quantities C, and C; as
follows. They would correspond to time derivatives of the
Ry and ‘R; constraints if H; were the Hamiltonian of the
system.

3
= szf (27 =7 ale) { Fy, [K]Rlﬁ’lc}’je + Fz,[/cz]J’iCYje + EFZ,[}C3]ICliylcyje:|

3
— m*Mp\/yMC'; { Friq)Kqur™ + Fy g 7ar! +2F1 &8 Far! ] (12)

C[v] = / BxCvt = {R[v]. H,} = { / d3xR,-vi,H,}

1
:Esz%/d%c\/_D ! {

V7 .
+2M == F, ey

7 2

\/_ . L
—Fz K] (K 7%y + K57y 1)

7

3 . .
_M%Fz,[ﬁ] (K 7%y + ’Cklyljyki)] ; (13)

where we have taken into consideration the fact that having chosen the unitary gauge, the constraint R, explicitly depends
on time. The notation F,y represents partial derivative of F with respect to X. The previous relations lead to
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1 ~ ~ >ce C zdae a a
Co = Esz%M\/}—’(z}’bdﬂ — 777 [Fo i) RV acVae + 2F 2 Vbl de + 3F 51K Y act ae) + v/7Cr (14)

1 - - - -
Ce= —5sz%MCLd(Fl.[@]}"”’/C“WM +2F) (@7 pe + 3F 1 (9 R7"ee)s (15)
7 [Fox . y . 3 . e
Ci= —sz%\/ij{M% [—24[ L(&T 7% 4+ RK70) 4 + Fy ey 'yi + 220 (K7™ + Kklylj)}'ki] } (16)

We are now ready to define the extended MTMG theory by giving its Hamiltonian density as
1 .
H=-NRy—NR; + = mZMZM\/ Fy (K], [K?), [K3]) = ACo — AC,. (17)

Now all the eight constraints, imposed by the Lagrange multipliers N, N, 1, A’, are second class which then leave only two
dynamical degrees of freedom. We can write down the Hamiltonian of the theory as

H= / d*x [—NRO NR, —l—;szzM\/_ F>([K], [K?], [IC3])—ACO—\/7(D,,1")CJ,}, (18)

where we have introduced the three-dimensional tensor

1 71
—m2M§Mﬁ _F,
2 V7 12
In summary, since the constraints for the theory now add to eight, the theory is minimal, i.e. the number of gravitational
degrees of freedom is now 1 (12 —8) = 2.

Now we have arrived at the Hamiltonian of the eMTMG, where we have removed the additional mode by adding

constraint ACy and /7 (D jﬂi )C/; to the precursor theory (actually only two of them are new to the precursor theory). Then the
remaining two modes are independent polarization of transverse-traceless gravitational waves with mass.

. i 3
Cli= K (R + PRy + 26 P + 5 Fo oy (K + 7K )71,] (19)

D. Minimal theory Lagrangian

In order to find the Lagrangian density of the theory, we need to perform a Legendre transformation. From the
Hamiltonian equations of motion for y;;, we find

={rij Ho} = (271k7/d Viitka) % + yuD;N* + v D;N*

+ 2m2/1M ? 27 Fy ey (7ij7ka = 2¥ik¥ ja) — (K¥aF 250 4 3K 4 F o ) 7% (VieV jk + ViV je = VijYke)]s  (20)

so that we can also find the relation between the extrinsic curvature K;; = LN (7ij — vauD;N k_y kDN k) and the canonical
momenta 7%/ as

1 M \/_
Kij = M2 (vt ja = 7ijYra) B + 2 7 N v [27/de 202 (VijYka = 2Yik? ja)
- (@dez,[lq + 31deF2,[/C3])7 (Vie}’jk + ViV je — }’iijE)]v (21)

out of which we have

m*M3: M
o 0. (22)

oM
7 == =y K =

Here, we have introduced the following tensor
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V7

0 = - W [(F* K+ 7R KI ) Fo i) + 477 Fa oy + 37 Kl + 75K ) Fy s . (23)

After a straightforward calculation, we can write down the Lagrangian density of the extended MTMG as

£ = M0 N R K~ KiyKua) + R LM VL), 121, 7))~ S M MK, P 67

m* M2 M>
64N

It should be pointed out that the constraints imposed, at the
level of the Lagrangian, impose a nontrivial relation not
only on the three-dimensional metric, but also on the
extrinsic curvature. This structure then is intrinsically
different from the Lorentz-breaking massive gravity theo-
ries of [38,39].

The idea behind MTMG/eMTMG is to have a viable
theory of massive gravity. Still this motivation led us
extending MTMG into eMTMG. Part of this process
consists of removing unwanted extra modes. Then the
theory here introduced, in the gravity sector, is left only
with the two transverse-traceless gravitational waves, hence
we call it as “minimal theory.”

It is interesting to notice that this theory is different from
other widely known modified theories of gravity like
scalar-tensor and vector-tensor theories, which introduce
in general additional degrees of freedom.

The bottom line here is that we have extended MTMG to
a more general class of massive gravity theories, which all
only possess, at the fully nonlinear level, two tensor-type
degrees of freedom on any background. We call the new
theory the eMTMG.® The original MTMG is a particular
case of eMTMG and it can be refound when the functions
F , reduce to this special form:

MTMG __ 1 3 1 2 1 3
A — ¢, (510] - 118 + g7 )

PSP =[S 4ol +an  (25)

FY™G = ¢,[K] 42 (KT - [K7)

—l—q(%[l@]—l[

1
Z 21 & K13
5 K17 +6[IC] > (26)
as shown in Appendix B.

*We name these models as “extended” because they possess a
general graviton mass term at the level of the Hamiltonian.

\/}7}/ik}’jd(2®”®kd - @lk®jd) + /1\/}7 C§ - ZmZM]%MKU@U + \/}7(Dj/1’)CJ, (24)

III. HOMOGENEOUS AND ISOTROPIC
BACKGROUND

So far we have extended the original MTMG theory to a
much larger class of theories which is defined out of two
free functions F'; ; each dependent on three variables. This
class of theories is expected to include a very large set of
possibilities in terms of phenomenology. However, the
original motivation to introduce such a class of theories
was, and still is, to cure the problems encountered in the
normal branch of MTMG, namely the presence of a pole
in the function G.¢/Gy, which would in turn lead to an
unviable cosmology in a neighborhood of them.* Then it
would be interesting to study whether inside the class of
eMTMG theories, it is possible to find a subset which is
always phenomenologically acceptable. By “always” we
mean for any redshift and for any background dynamics.
This extra dynamical condition might be too strong, as
effectively, one would need only a subset of well-defined
dynamics, however, after imposing it, if such a subset
existed, would provide a ghost-free, instability-free arena,
where we can try to solve today’s tensions in cosmology
out of a massive graviton.

Hence, let us explore these extended models as to find a
good behavior for G /Gy, the effective gravitational con-
stant for the density perturbations of a pressureless fluid on a
homogeneous and isotropic background. For this aim, let us
study in this section, first of all, the background for these
theories in the presence of matter fields. Letus focus then ona
spatially flat FLRW background which is described by

N = N(1),
A= A1),

N' =0, vij = a(1)*5;;,
=0, (27)
whereas the fiducial sector is given by

For the matter sector we introduce a perfect fluid (one for
each matter component) modeled by the Schutz-Sorkin

action as in [40-42]

“At the pole or approaching the pole, at least at linear order, the
theory would exit the regime of validity of a low-energy effective
theory description.

084050-7



DE FELICE, MUKOHYAMA, and POOKKILLATH PHYS. REV. D 106, 084050 (2022)

— and the proportionality constant A/, determines the constant
"= IS G number of fluid particles (n being their number density).
(29) Furthermore, the background equations of motion imply

L / dxy/Glp(n) + 49,2,

t
for which we can introduce the normalized fluid £(t) = —/ N(t)p ()t (31)
4-velocity as u® = J%/n, and g,, is the four-dimensional
physical metric written in the ADM splitting (2). On a For the spatially flat FLRW background we find
spatially flat FLRW background we have at the level of the a\n a\n
background []R"] =3 <_> , [Kr] = 3( > (32)
a
JO(1) = &, J(t)=n(t) = 'Aé’ (30)  so that the minisuperspace’ Lagrangian density evaluated
N(1) a on the background reduces to
J
31, > . M. i o 5 3MRad?
ﬁmini = E a(3F2’[,C3]a + 2F2’[)C2](la + Fz’[]qa )N - a(a qu[ﬁl + 2F1’[§2]a(1 + 3F1‘[§3]a ) m MPJ, -
3M (3F2 [K%]Cl +2F2 [}CZ]aa+F2[;C )2 4M2ﬂ,2 ZM%&Q(MFZ—FNFI)
16aN 2
_33Z[~71f1 + Npi(T1)]- (33)

1

On evaluating the Euler-Lagrange equations for the fields N, a, 4, £; and J; we find the equations of motion for the
background.

In order to evaluate the value of 4 on the background it turns out to be much simpler to study the Hamilton equations of
motion. Out of the Lagrangian we can find the Hamiltonian in the minisuperspace via a Legendre transformation as

da 2

m*Mia*MF Fia’m>M3 p2
++2+N<1f+a3zp, ) -— M2> 3+ YT+ pa). (Y

P <pa(3F2’[,C3]a2 + 2F, yxjaa + Fy @ )M N 3M3a(a*F ) + 2F | (q2ad + 3F1‘[§3]Zz2)> 2

where p,, p7; and p,; are the momenta conjugate to the variables a, J; and ¢, respectively, whereas 4, N, [; and 1, are all
Lagrange multipliers which set constraints. One such constraint is then

(3F2 [}CS](I + 2F2 [,Cz]aa + F2 [;q )M 3MPa(a F1 [g] + 2F1 [§2]ad + 3F1 [@3] )

Cy= ~0, 35

0 4a 2 (35)
whereas the Hamiltonian constraint can be written as
F 161 m M P

Ry = a’ 36

0= Z/’l(j AT M2 (36)

Let us now impose that the time derivative of the constraints should vanish on the constraint surface. For example we have
par =A{pPg1, Huini} = =@’ (Npy g +1;) =0, or [;~-Np; g, (37)
which sets all the 7,’s Lagrange multipliers in the matter sectors. Furthermore we have

*We have evaluated the Lagrangian density (33) by using only the fields which can fully describe a homogeneous and isotropic
manifold. For example, in the metric tensor, this approach only keeps then the lapse N () and the scale factor a(¢). In general we have
several fields living in one-dimensional space that we call minisuperspace.
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(T1d + poyHo ) = 37 <Mm2(3F2,[;<3]a2 + 2:;2,[;@]01& + Fy ga*)2 ~ 6;;];;) il (38)
which can be used in order to set the Lagrange multipliers /;’s. Also we can find
Ry ={Rg, Hpini} + th ~0, (39)
which combined with C, gives
Ry— Cym fAx0, (40)

where f is a quantity which in general does not vanish, unless some fine-tuned dynamics are considered. This equation then
determines the Lagrange multiplier 4, without adding any new constraint, and it finally leads to the conclusion that on the
constraint surface, that is on the background, we need to impose A(z) = 0.

With A(7) = 0, the independent background equations of motion greatly simplify and reduce to

3MAH? = Zp, += MPm2F1, (41)
M aa a a\2
0= =3H(p, + Py). (43)

where H = a/(Na) is the Hubble expansion rate for the physical metric. Let us then define

X

Q|

; (44)

and suppose that X > 0, during the whole evolution of the universe in the regime of interest. The constraint equation,
Eq. (42), can be rewritten as

M X

|
Unlike the original MTMG, the space of solutions for ;

Eq. (45) is not in general separated into two branches, N=N(@), N'=0 y;=a {51‘1‘ + Z eﬁjhi}’ (46)
the so called self-accelerating and normal branches. The et
special case in which such separation occurs is briefly
studied in Appendix C. On the other hand, in the rest of the ~ where the two symmetric polarization tensors satisfy both
present paper we consider the general case, thatis the single  the transverse and traceless conditions €7, 5fla,h , =0,
universal branch, defined by Eq. (45), for all the eMTMG 5l ¢l
models.

=0 and the chosen normalizations e;e;;né”éfm =
€08, together with ey, 676/ = 0. After
expanding the Lagrangian at the second order in the tensor

perturbations, we obtain the quadratic action describing
In this section we study linear perturbations around the  their dynamics as

spatially flat FLRW background introduced in the previous
_ M3 \? (0hy)?
P E / d*xNa’ [(N) B wrhil, (47)

section.
A. Gravitational waves A=+.x

l—e

IV. LINEAR PERTURBATIONS

Let us now consider the tensor perturbations for the
physical metric, namely where
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I
w? =3 m2X[r(X2Fy ) + 4XFy o) + 9F )

+ Fl,[ﬁ] -+ 4XF1$[§2] + 9X2Fl,[§3]], (48)
and we have defined for later convenience also the quantity

r= lM (49)
XN

Therefore these models do introduce a nontrivial mass for
the tensor modes, however the speed of propagation,
for high-k modes, i.e. at energies for which the graviton
becomes ultrarelativistic, will still be equal to unity.
Furthermore, the graviton mass not only does not vanish
in general, but also it is changing with time. For this reason,
we will also demand that a well-behaved subset of eMTMG
models would also satisfy the condition of a non-negative
u? for any dynamics of the background.

B. Effective gravitational constant

In this section we consider instead the scalar perturba-
tions and expand the action for the theory in the presence
of matter perfect fluids up to the second order and remove
at the level of the action all the auxiliary fields to find
the quadratic action for the field 6p/p, which we shall
define below.

First of all we will explicitly write down all the
perturbation variables, both in the gravity and in the matter
sector. We introduce scalar perturbations for the physical
metric in the following way:

N =N(1)(1 + a), (50)
N; = N(t)oy, (51)
Yij = a(t)zéij(l +20) +20,;E. (52)

Since we have fixed from the beginning the unitary gauge,
we cannot impose any gauge condition on the perturbation
variables. We also need to introduce perturbations for the
following eMTMG variables

) 1 .
A== 599,50y (53)

A =64,
a2

As for the matter sectors we proceed instead as follows.
First of all we make the following split

J (1)

P =5 o) (54)
Ji— %&Jajajv, (55)
¢ = (1) + 8¢. (56)

For each matter component we consider matter field
redefinitions as follows. We first define the fluid perturba-
tion scalar velocity v as

u; = gy, u' = o;v, (57)
which leads to the field redefinition

6y = n(1)(v - x). (58)
Expanding the action at the second order in the perturbation

variables, finding the equation of motion for v and solving
it for 67 gives

8 =p,v, (59)

which can be used in order to integrate out the field 67.
Also we can perform a field redefinition as follows

0 )
57 =" —p—a, where X =2 _q. (60)

) p o p()

As for now we have an action for the perturbation which
is a function of the following variables: a, y, {, E, and
64,6y in the metric sector, together with dp/p and v for
each matter-fluid component. We can find equations of
motion for each of these perturbation variables, and we
label them, e.g. as E, (which vanish, i.e. E, = 0, and the
subscript shows the variables for which the equation of
motion is derived, y in this example). In the following,
although not necessary, we will use time reparametrization
as to set N(¢#) =a(z). Since we want to match the
phenomenology with observations we will also make the
following field redefinitions which link « and ¢ to the gauge
invariant definitions of the Bardeen potentials y and ¢:

1 1d| d/[E
= — _— — | — 1
a=v a)(+adt[adt<a2)]’ (61)
d (E
C__¢_HX+aHE<?>7 (62)
op p_,pd(E
Zos-Ly4+2—(Z2), 63
P ap)(—’—pdt a’ (63)

whereas the last equation introduces & as the gauge
invariant longitudinal matter perturbation. Finally we also
make the field redefinition

a

K2 jt (%) ' (64)

v O+y—a—

where 6 is another gauge invariant variable related to the
scalar fluid velocity. We can also introduce, at the level of
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perturbation, a shear term for each matter component as
done in [16].

So far, the equation of state of the perfect fluid is general
and in the next subsection we shall further consider
equations of motion for this general system. In the rest
of this subsection, on the other hand, we restrict our
considerations to the case of a single perfect fluid to
compute its sound speed and in the case of dust, the
effective gravitational constant.

The first nontrivial feature of the models consists in the
constraint equation set by the field 6. In fact we find that
it can be written as

2
{oE E. (65)

_ 6 4
B = P Ty Fame + gz o) + 5z Fapeie

12 9 6
+ FFZ[,CZ][K?] —|— FFZ,[/CS][]C3] + 2F2.[IC2] + }FZ,[]Cﬂ'

(66)

Therefore, the quantity =, discriminates the behavior of the
theory in the high-k regime, as, in general, the phenom-
enology of the theory will be different for the eMTMG
models depending on whether E; is zero (or negligible) or
not. The mirror quantity E, for the function F; turns out to
have also a strong influence on the phenomenology of the
theory, as we will see later on

By = Fijg)s) +4XF) [q)s2 T 6X°F q)s7)
+ 4X2F1’[§2H§2] + 12X3F1’[§2M§3]
+9X*F (@sy) + 2F) (g2 + 6XF . (67)

Indeed, one can proceed to remove all the auxiliary fields
except for the field 8p/p, which, in the case of a single
fluid, has the following schematic quadratic Lagrangian

density
£5p:A(k2,t)Li/§t<6pﬂ B(kz,t)<%p>2. (68)

In the high-k regimes, we find that the no-ghost condition is
always verified, since

1 a’ p?
A=-Na’>—
2 K np

(a*/k*), (69)

which is always positive, provided that np , = p + P > 0.
As for the B term, we need to distinguish among
possibilities.

(i) Case for which E; # 0, and in this case we have

N
B— a pnnp Pont” O( 2/](2) or C% _ np nn ’
2 n P.n
(70)

giving the standard results for the propagation of
perturbations in a fluid.

(i) Case for which E; = 0, or very negligible namely
E,k*/(a*H?) < 1, and in this case we find instead

2.2

Na® [p up? m*p

B=- +EyBy(1) 7y | + O(a?/K),
2 | MzH!
2
s M | o, Mp+P
or = +5,B,— . (71)
s . P HEMAH?

which leads to a nontrivial propagation speed unless
also B, =0 (or, as mentioned above, very negli-
gible). Indeed the case E; = 0 = E, is the one we
are going to focus on in the following sections. 6
Nonetheless, as long as E, (or B,) does not vanish,
the speed of propagation for any matter fluid will get
modified. This nontrivial property is shared by
another minimal theory of gravity introduced and
studied in [43,44]. In particular, a pressureless fluid
will acquire a nontrivial contribution. This unusual
behavior of matter fields can strongly constrain the
phenomenology of the theories belonging to this
special case.

(iii) Case for which Z, =0=32, and p,, = 0= c2,
where the last equation of state corresponds to
choosing a pressureless fluid as matter field. In this
case the Lagrangian density of Eq. (68) for the
energy-density perturbations reduces to

L@ [ 10 ()]
2P N\

50\ 2
+ 4nGegep <[')0> } (72)

out of which one can deduce the expression for
G:/Gy, whose value (which is not unity, in
general) is explicitly written in Appendix D.

'Cdust

C. Equations of motion for scalar perturbations

In this subsection, instead of considering a Lagrangian
approach, we consider an equivalent approach, based on
studying the equations of motion for scalar perturbations in
the presence of matter fields modeled by perfect fluids with

SSince B, « (X2 Fapx) + 2XFaje) + 3F, ie)? (Fus) +
2XF a2 + 3X°F,. [@2]) the case B, = 0 corresponds to the
self-accelerating case, which will be discussed in Appendix C.
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general equations of state. In this case though, we general-
ize the previous results to the case of an arbitrary number of
matter fields.

In particular, in terms of the gauge invariant variables
introduced in Egs. (61)—(64), the matter equations of
motion for each matter component are the same as in
General Relativity, namely

81 =3a(w; — 2)HS — (1 +w)) (0, =3p). (73)

. 2 k2
0, = aH(3c2, - 1)0, + Ky + 1" 5, — Ko, (74)
' 1 + wr
where w; = P;/p;,and ¢, = p;/p; = (%)v is the speed of
propagation for each matter species. Here the subscript /
runs over all the standard matter components we consider.
The fact that in the matter sector we refined the same
equations of GR is not surprising, as the Lagrangians of
matter fields do satisfy general covariance.
We can proceed by solving Ej,  for y, E, for E and E,

for 6. Now the equation of motion Ey can be written as
Ep=S1¢p+Sap+ Ssw + Y _Sasdi+ > _Ses0
1 7

+ Z:SS,IéI + 2;510191 + 81264y =0, (75)

where the S’s coefficients are functions of k and time.” A
linear combination of Ey and E; leads instead to

EEC = T15/1V + T2¢ + T3l// + ZT4!151 + ZT&IGI
1 1

—+ ZT()JU[ - 0, (76)
1

which can be used to define 64, in terms of the other
variables. Finally the equation Ej; leads to

Es; =Up+ ZU2,151 + ZU4,191 =0. (77)
7 7

Here, T°s and U’s are, once more, coefficients which
depend on k and time 7. On considering the time derivative
of Eq. (77), namely Eg;, and replacing ¢, 5, and 0, with
those given by Eqgs. (75), (73), and (74) respectively, we
arrive at the so-called “shear equation” for this theory. This
approach then leads to a structure of the equations of
motion which is analogue to the standard approach in
General Relativity. This is a consequence of the fact that
these theories do not add any new degree of freedom, i.e. no
new dynamical equation is necessary to determine new

"The explicit form of the coefficients S; _;, are in general
quite lengthy, and not strongly illuminating. We will instead write
the explicit expressions of the observables when needed.

fields (which do not exist in the first place), but still they
change the equations of motion for the linear perturbation,
e.g. by the fact that the coefficients S, , differ from the
ones in GR. So after all, a different phenomenology is
expected to take place in general, although the number of
degrees of freedom has not been changed.

V. PHENOMENOLOGICAL CRITERIA

So far the approach was totally general, and it can be
applied to general functions F;, and arbitrary matter
components. On the other hand, in order to give predictions
on the graviton mass from observational data, it is ideal to
have a well-motivated subclass of models with a finite
number of parameters. For this reason, in this section we
shall make a list of phenomenologically motivated criteria
to be imposed on the theory.

A. ¢2=0 at all times and G¢/Gy — 1
at early times for pressureless fluids
In Sec. IV B we have computed the squared sound speed
¢ and the effective gravitational constant G for scalar
perturbations in the presence of a pressureless fluid. Based
on these considerations and the result of Sec. IV B, we can
divide the theories into the following three categories.

(1) The case E; # 0. In this case, from the equation
of motion for A, we find ¢ « E. Furthermore,
after removing all the auxiliary fields, we find
that Ge;/Gy = 1+ O([k/(aH)]™?) independently
of the model. Therefore, for this class of models,
the background dynamics will be modified, but the
behavior of the perturbations, in the short scales
regime, will not. This could be an interesting
possibility, but since, we are looking for theories
which can address a gravitational interaction weaker
than General Relativity, we will not discuss this
model further in this paper, but we will consider it as
a subject of investigation for a future project.

(2) Thecase E; = 0, but Z, # 0. In this case, { = 0, and
the matter perturbations acquire a nonzero speed of
propagation, namely c2 # 0. This case will not be
discussed further as strongly constrained from a
phenomenological point of view.

(3) The case E; =0=E,. In this case, {=0,
Geir/ Gy =A(1)/Z(1) + O([k/ (aH)] %), where A(r)
and Z (1) are expressions which only depend on time.
In general G/Gy # 1, but

fim et
m/H—0 GN

1, (78)

which leads to the standard evolution for matter
perturbations at early times.
Both ¢? and G are important for the formation of the
large-scale structure in the universe. In GR, ¢2 for a
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pressureless fluid vanishes and this is consistent with
observations. If ¢? is negative or too large then the
prediction of the theory would contradict with observa-
tions. Although a positive and sufficiently small ¢? can in
principle be consistent, for simplicity we restrict our
considerations to the case with ¢2 =0 for the eMTMG.
In this case the effective gravitational constant controls the
behavior of scalar perturbations. Motivated by the fact that
the standard ACDM in GR fits the Planck data very well,
we demand that G/Gy — 1 at early times. On the other
hand, at late times we would like to have deviation of
Gt/ Gy from unity. This is motivated by the recent tension
in the estimation of the parameter Sy between the Planck
2018 data and late time observations like KiDS and DES.
Hence, modifying the growth of structure formation may
address the Sg tension in cosmology. For these reasons, in
the rest of the present paper we study the third case above,
that is the case for which

[1]

I
o
|
(1]
[\e}

(79)

B. Finite G.¢;/Gy for Y X(¢)

One of the main motivations in this paper is to have
models for which G /Gy never blows up during a general
evolution of X(#) and r(t), keeping the theory safely in the
regime of validity of the effective field theory. This implies
that, on considering the quantity Z(¢), we need to impose
that it never vanishes for any dynamics of X(¢) and r(¢),
assuming them to be all positive quantities.

If the expression for G./Gy has poles for some real
value of X = X, we could just make sure that during the
dynamics these values of X, should not be reached.
However, this might not be possible to predict in general.
For example in MTMG, this pole corresponds to a time for
which H?> = H2, = ji>/2, where u is the mass of the
graviton. This means that for MTMG we had to have that
H?, < H}. However, well before reaching this pole, the
phenomenology of the theory was leading to inconsisten-
cies, see e.g. [37,45]. Therefore, just avoiding the poles
may not be enough to lead to a viable phenomenology.
Therefore, we want to find, if possible, a subset of theories
which, under this point of view, are always consistent.

C. Positive p* for Y X(¢)

Furthermore, we also impose that the squared mass y> of
the tensor modes remains finite and positive during a
general evolution of X(z) and r(¢).

As previously mentioned, in MTMG, a pole for G.¢/Gy
was reached when H? = H2 = u?/2. Evidently this
pole can be removed provided that we impose u? <0,
that is when the graviton has a negative mass squared.
What would this mean? In a cosmological scenario, this
would make tensor modes unstable. But this instability

would be reached when the energy of the graviton itself,

E = [k — |u?| is comparable to \/[?[, and as such

astrophysically produced gravitons will not show this
instability. Furthermore, such an instability would have a
typical time-of-instability of order of 1/+/|u*|~Hy!,
which would become evident only in the future.
Nonetheless, in this paper we assume the tensor modes to
be nontachyonic. In this case we have to impose that during
the whole history of the universe x> > 0. This condition is,
in general, independent of the absence of poles in G/ Gy,
so we expect that they can be imposed simultaneously.

D. Finite ISW effect

There are other observables which still strongly influ-
ence the behavior of late time cosmology. In particular, here
we consider the following combination, whose time
derivative affects the ISW effect, namely

Visw = ¢ + . (80)

We demand that yqqw remains finite during a general
evolution of X(7) and r(r).

In fact, the correlation between ISW and galaxy pertur-
bations usually sets strong constraints for modified gravity
models, in particular an anticorrelation signal is ruled out.
For example in MTMG, it was shown that the ISW-galaxy
correlation effect was one of the tightest bound the theory
had to pass, see e.g. [24,36,45,46]. As already stated above,
in order not to have strong constraints coming from this
observable, we demand the finiteness of ygw and its time
derivative during the whole dynamics of the universe.
Doing so in principle should add new constraints, and as
such further reduce the possibilities for the model to exist.
However, as we shall see later on, at least for the case under
study the finiteness of G/Gy turns out to be a sufficient
condition for the finiteness of the ISW observable.

VI. CONCRETE REALIZATION BASED
ON POLYNOMIAL ANSATZ FOR F,,

In principle it should be possible to find the subclass
consisting of all theories that satisfy the phenomenological
criteria summarized in the previous section. However,
the analysis and the result are expected to be rather
complicated (if possible in practice). In this section we
therefore consider a simple ansatz for the functions F'; , and
then impose the phenomenological criteria step by step.

Considering the fact that the original MTMG has
polynomial expressions for F; , in terms of their variables,
we therefore restrict our considerations to the case where
F, are polynomials of their arguments. Furthermore, for
simplicity we truncate the polynomials at the sixth order in
K'; and &', respectively, as
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Fi(A,B,C) = a3 1111 A° + a3 11111A° + az 1111A* + a3 1A% + a311,A’B + a3200B° + ay 1A + 2a5 ,AB
+ a3,]22AB2 + 2Cl2.]3AC + az‘zsz + 2612’23BC + 612.33C2 + Cl]A’lA + al,QB + a],3C
+ glA4B + ngsz + g3A3B + g4A2C + gsASC + g6ABC + Cy, (81)

F3(A,B,C) = by 111111A°% + b3 11111A% + b3 1111AY + b3 111A% + b3 112A’B + b3 200 B® + by 11 A? + 2by ,AB
+ b3 120AB? +2b; 13AC + by 2, B? + 2by 3BC + by 33C? + by A + by ,B + by 5C
+ " A*B + hy,A2B? + h3A’B + hyA’C + hsA*C + heABC. (82)

Essentially, as already stated above, the polynomials have
been chosen so as to be linear combinations of terms in the
form A”1B»Cbs, with the conditions that b, € N* and
by < 2. Then the other powers, by ,, have been chosen so
that, on FLRW, once written as polynomials in X, which
can be grouped according to equal powers of X. For
example, the variable C in F; will lead to a term X3, B
to X2 and A to X. Therefore, for instance, we allow terms in
C2?,A3C,ABC, B3, A2B%, A*B, A® which all lead to a term
proportional to X, etc. Although this toy model is just
meant to be a proof-of-existence case, we will find that the
models satisfying the properties we are looking for all
behave in the same way on the FLRW background, so that
we believe the model can catch general properties of the
extended minimal models of gravity. Indeed, as we shall
see later on, further simplified subcases which are still
general enough in their dynamics will be found.

In the following we shall impose all phenomenological
criteria considered in the previous section step by step.

A. c¢2=0 at all times and G.¢/Gy — 1 at early times

Let us now impose the conditions on the parameters so
that ¢2 = 0 at all times, that G./Gy — 1 at early times and
yet that G/ Gy exhibits interesting deviation from unity at
late times. As discussed in Sec. VA, this amounts to
requiring that, for any X, we have 2, = 0 = &,. This will
select the models belonging to the third case mentioned
above. This condition fixes some constant parameters to
satisfy the following relations

7 1

as g = —Ea&zzz - 502,33’ (83)
2 7
as 11 = —1—5‘12,23 - 503,122’ (84)
4 5 4
as i1 = —502,13 - Eaz,zz - §a3,112’ (85)
1 10
as i = —gam —?az.lz, (86)

a1 = —dip, (87)
with analogue relations holding for the b’s coefficients.

B. Finite G.¢/Gy for Y X(¢)

We now require that Z(¢) never vanishes for any positive
X(t) and r(t). Later we shall also impose the positivity of
u?(t). Therefore, in this subsection we also assume that
4% (1) is also positive.

In order to simplify the expression for Z(r), we first
replace X on using the background constraint, Eq. (45). We
also replace a in terms of H, M in terms of r, N, X, and say
b3, in terms of y2, by inverting Eq. (48). Then we find
that Z « Z,(1)?Z,(t)*Z5(t)*Z4(t)*> (where the proportion-
ality factor is positive definite, by assumptions, being a
product of powers of H, r, X, a, N)and Z; (I = {1, ...,4})
are instead polynomial in powers of X, r and u®. We
conservatively impose that each of the coefficients of such
polynomials have the same sign, so that each polynomial Z;
would never vanish. The expressions Z3, only set con-
straints on the a’s parameters, whereas Z, , also constrain
the b’s parameters. On considering only Z, 5 4 (Z; being the
most complicated expression) then we find the following
constraints need to be satisfied

ay = _A%,w A%,l >0, (88)
Cl]yz = A%,z Z Os (89)
@12 = —5013 + &, & >0, (90)
Ay = —3ay,3 — 503,112, (o1)
3 9

4223 = =742 "¢ (93 + 94), (92)

3 9 9
ar33 = —503,222 - 591 =39, — 595 —29s, (93)
bl,l — _B%,l’ B%l Z O, (94)
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by, =Bi, 20, (95)
1 > >
b2.]2:_§bl.3 + 1, {1 20, (96)
3 9 5 )
byo3 = _Zb3'122 - g(ha + hy) + (3, 320, (97)
1 1 ’ ’
by 13 = —gbz,zz—§b3,112+§2» {320, (98)

It then turns out that these are sufficient conditions for
making also Z; never vanish.

C. Positive u* for Y X(¢)

In this process we have assumed that y? is positive.
However, we have to make sure it is. In fact, we find that on
using the previous constraints, the squared mass for the
tensor modes can be rewritten as

1 1
W= —Esz%er3 —m?(rB?, "’A%,z)Xz - EmzAilX

+ 6m?*r&3 +1X—2m2rC§ —l—%mzrﬁ, (99)
where
byzs = (- %bmzz - g (hy + hs) = 3hy — 2he,  (100)
so that we also need to impose
B, =0, (101)
B, =0, (102)
A =0, (103)
A, =0, (104)
{320, (105)
or
2 22 20, 9 0
u= = 6m r<§2+XC3 +5X2€4)' (106)

D. Finiteness of ISW effect

In the following, we show that the phenomenological
criteria so far are sufficient to guarantee the finiteness of the
ISW effect. For this purpose we use the equations of motion
for scalar perturbations derived in Sec. IV C.

Since we are interested in the behavior of dust at late
times, we will consider only one single pressureless fluid
(modeling baryon and dark matter components). This leads
to having effectively only one kind of matter component,
for which the equations of motion reduce to

Ey=6,+0,—3p=0, (107)

Esy)p = 0, + aHo,, — Ky = 0. (108)
Also we consider the subset of the extended theories which
satisfy the conditions E; = 0 = &,, and in particular the
model and the constraints we have found in the previous
section leading some coefficient to vanish, e.g. S;, = 0, as
to have

Ep = Sip+ Sap+ Ssw + S100,, = 0. (109)
Instead, Eq. (76) reduces to
EEC:T15/1V+T2¢+T3W+T46m+T69m:0’ (110)

which, as done before, can be used then to define 64, in
terms of the other variables. Finally the equation Ejy;
simplifies to

E51:U1¢+ U25m+U49m:O. (111)

Now, on taking the time derivative of Eq. (111), we have
Es = (U 43Uy + K2Uy + U+ U,5,,
+(Uy - Uy — aHU,)0,, = 0,

where we have replaced the time derivative of the matter
fields by using their own equations of motion. Then we can
build up the following combination of equations of motion

Eg= (U, +3U,y)Ep — $1E5 = (U, +3U,)S;
— U + (U1 4 3U2)8, - S, Uy ¢
+ (U, +3U,)S1p - (Uy—U, - aHU4)S,10,,

- 8,U,5,, = 0. (112)
From this last equation, Eg = 0, we find
V/:Fx//((l)’em’&m)' (113)

On substituting this expression into Ez = 0, we can solve

this equation for ¢ as
b =Fiy(h.0n5). (114)

Then on replacing g{) in Ey = 0, we can solve it in terms of
0,,, finding

em = FH(¢’5m’(.Sm)’ (115)
from which we also obtain

V= Gw(¢v5m7sm)v (116)

$ =Gy 5. 6). (117)
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Oy = Fy(h, s S B1). (118)

Then on substituting these expressions in E;,/, = 0, we can
solve it for ¢ as in

b =Fp(8,0. 0, 0), (119)
which in turn can be used to set

Y =1y (s s B, (120)

O = Hy (81 8,0, 5,0).- (121)

Finally we can substitute these last expressions for ¢ and
0, into Eq. (111), E5; =0, in order to find a closed
differential equation for §,, of the kind

8,y + Ab, + BS,, = 0. (122)
Once more, the reason why we can close the dynamical
equation of motion for 9, is that the theory does not add

any new propagating degree of freedom in the scalar sector.
In the high-k regime the previous equation reduces to

5m + aHam - A el

Q,a*H%5,, =0,
2 GN md m

(123)

Fr= oo+ (G180 - (RS + (97 Jays + (218087 -

1

+ (18P0 - g8 =318 Jas. o + (18P -

where Q,, Afl’g’Hz

is shown in Appendlx D. This differential equation for §,, can

and the concrete expression for G¢ /Gy

be used to replace &, in terms of §,,, 5m, so that any scalar

perturbation field becomes a function of ,,,5,, only. The
result in this section for G.;/Gy, following a different
method, agrees with the one of the previous sections, as
expected.8

At this point we have found that all the fields (except for
0,, itself) can be written as linear combinations of §,, and

3,,,. In particular, we can find the following combination,
whose time derivative affects the ISW effect, namely

Visw = ¢ + . (124)
We find that in the high-k regime we have
3H3Q,0 .6
Yisw = — 122 0257 (125)

where ¥ = X(t), lim,, y_oX =1 and its denominator
never vanishes for any dynamics of X(r). The general
expression for this model is written in Appendix D

E. General subclass

Finally, on putting together all the phenomenological
criteria, we find that the model can be rewritten as

8P )+ (G0 + 2R =3P o

@_3[@3}2
54 2

Jasa + (182181 - 181157 )
|

(- 2 - ) (SSE RN S0, (GORP USR8,

NIRRT ) OIS S -
Fa = (S = I + 001 s+ (= 35 3 = IR + 1 )b+ ( o P+ 20670671 )3

+ (2t - 5 )3 + (e - ) g+ ([/@] s

+ (1ePicE - 2 - s Yo+ (LSO _PY, (G = BCDIEY_ I,

(1) = 01 =000 s (02 = IEE - Y (i = S-S0 )

+ (e =30t - b s - B0 4 (g g 2008 Yo, 20

*In particular, this result shows that 5p/p = &, in the high-k regime. It can be proven that this same result holds also for another gauge
invariant combination, the comoving matter energy density defined as 6, = ép/p + 3Hv, namely 6p/p = §,,.
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For this class of models we can see that

X 508X +103X2 + 103X + 642
R = r —
NH 5x4e

X, (128)

whose dynamics are always well defined. Note two things:
(1) a ACDM profile, i.e. X = X, = constant, can always be
given for the background if necessary, and (2) on giving
X (1), we find r(1), or vice versa, on giving r(t), one needs
to solve an ODE in order to find X(¢). It is interesting to
notice that the Friedmann equation can then be written as

3MBH? =Y pp+ m*M3(cy, — 622X3),  (129)
1

H X
2 _ 2,2 £2 2
ZM"N*_EI (o1 + Pr) = 6Mpm*E o X2, (130)

which simplify considerably. In this case the equation of
state parameter for the eMTMG component becomes
P, 30(X30} 428X + 283X +845)r — 5X%¢y

w

Dy
97 p, 5X2(cy — 6E2X3) ’
(131)

py=m*M3(cq — 682X3). (132)
Also, as already mentioned, the general expression for
G.r/Gy and X for this general subclass can be found in
Appendix D.

F. Simple subclass

We have obtained the general subclass of models in
Sec. VIE. On the other hand, since the observables, p,,

Gt/ Gy, T and pgy depend only on (cy, &, ¢, ¢, (30 C4)
among parameters in (126)—(127), we can pick up a simple
subclass as follows

Fi=cor (281 - I8P ) a3

o = (20010 - P )+ (20007 - 31 )3

+ (2 -2 )+ (wop-ED)a

(134)

’As we will see in Appendix C, the existence of the
self-accelerating  branch requires that Fgq) + 2XF g2 +
3X’F 1j«3 = 0, which for this subclass leads to imposing
12E82X? = 0, a solution which requires £ = 0. On the other hand,
we also need to impose Xzeq[,q +2XF, o) + 3F, 3 = 0,
which is solved by setting the condition 5£2X* + 10£3X%+
10§§X + 6Ci =0. In this case then G./Gy =1, and the
phenomenology reduces to the one of ACDM, except, in general,
for a nonzero value of the graviton mass.

which has six free parameters instead of four for MTMG
(or dRGT model). This subset, at least on FLRW, is
sufficiently general in the sense that it catches the behavior
of a more general subclass of models presented in Sec. VI
E. In general, from a purely theoretical approach, by using
symmetries in the space of the functions (in fact, all of them
would still belong to the minimal set of theories) we find it
difficult to strongly restrict the allowed possibilities. Even
then, still the final theory might not have a nice phenom-
enology. On the other hand, in this paper, we have shown
that demanding for additional phenomenological consid-
erations (all aimed as to give “a good fit to the data”) has
proven a powerful way as to restrict the space of allowed
functions for both F| and F,. The hope is that the real
theory (fully determined theoretically) might look like one
of these toy models.

In principle, one needs to be fitting all the free param-
eters of the model against the data, giving then predictions
on the graviton mass. We will study the possibly interesting
phenomenology for this theory in another separate paper.

VII. CONCLUSION

Nowadays, cosmology has reached an astonishingly
high level of understanding of our universe due to more
and more precise observations whose number also grows
more and more. However, these data seem to give us a
puzzling scenario regarding the dark sector of our universe.
This is not only due to the long-standing problem of
understanding the tiny value of the cosmological constant,
for which a complete theoretical explanation is still
unavailable. In fact, recent cosmological observations, as
they reached a percent level of precision (at least for some
of the experiments), show tensions and/or anomalies in the
estimation of cosmological parameters such as the z =0
Hubble expansion rate, H,, or the amplitude of matter
fluctuations Sy in the context of GR-ACDM. On the other
hand, the fact that GR has shown to be fully compatible
up to now with local gravity/astrophysical observations
(including the experiments concerning gravitational waves)
seems to leave little space to some deviations from it.
Therefore this scenario leads to doubts on the experiments,
or doubts on the analysis/interpretation of the data, or
doubts on the theoretical model used to fit the same data. In
particular, this third possibility opens up room for new
(gravitational) physics and motivates, for instance, the
study of various modified theories of gravity to address
these same tensions.

We have tried, as further explained later, to modify
gravity in this paper under the assumption that the graviton
has a nonzero mass. Indeed, giving a mass to the graviton is
a well-motivated scenario to consider. This issue has been
attracting the attention of several physicists, since the first
attempt by Fierz and Pauli, back in 1939 [21]. The full
nonlinear realization of massive gravity was accompli-
shed only very recently, which is now known as dRGT
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theory [25]. Although the theory of dRGT is a valid theory
for massive gravity, nonetheless it was proven that the
cosmology of this theory was plagued with instabilities
[27], as at least one (out of the five degrees of freedom) is a
ghost (whose mass is in general below the cutoff of the
theory). In [29] a new theory of massive gravity which was
constructed as not to have the unstable mode of dRGT
introduced. This theory, called “minimal theory of massive
gravity” (MTMGQG), is said to be minimal in the sense that, it
does not propagate any degrees of freedom other than the
gravitational waves, which, on the other hand, are massive.
This theory shows interesting phenomenology as it can
lower the value of fog [45], since pressureless fluids can
feel weaker gravity, as the effective gravitational constant is
lower than the Newton constant, i.e. Gy < Gy.

However, this modification of G in MTMG consists of
being a function of time with a pole at u*>/H2, = 2, with p?
being the squared mass of the tensor modes in the theory
and H, being the value of the Hubble expansion rate at
which |G.g| = oo, where the background is nonetheless
well defined and equal to ACDM. Then it is clear that the
theory breaks down (its description as a low-energy
effective theory), for Hy, > Hy, i.e. u> > 2H3, see e.g.
[37,45]. However, if 4> < 0 the pole is never encountered,
and G remains a smooth function at all times. The price to
pay for this (in MTMG) is that the gravitational waves are
tachyon fields, possessing a negative, but tiny-squared
mass. This would lead to a tachyonic instability for them
which is only effective for graviton-kinetic-energy of order
H3 (not visible at astrophysical scales) and a time of
instability of order H{, I Therefore in MTMG, either we live
with tachyonic gravitational waves, or we have to avoid real
(and larger than H) values for . This phenomena do limit
the phenomenological possibilities of the normal branch of
the original MTMG.

In this work, we extend the MTMG theory, motivated
by the previous phenomenological behavior, as to remove
the negative-squared mass behavior and, at the same time,
any poles in G.;. We impose these properties to be valid
at any time and for any background dynamics. By doing
this also other observables, such as the ISW field, will have
a smooth evolution. In order to define the eMTMG, we
first realize that the original MTMG was built as to have
the same cosmological background as dRGT. Then, we
allow the new class of theories to have a general graviton
mass term and not only the MTMG/dRGT-like one.
Afterwards, in order to have a theory with only tensor
degrees of freedom in the gravity sector, we implement
new constraints as to remove the unstable modes (already
present in dRGT). Now the eMTMG leads to a mass term
which consists of two functions: a function F; of []], [K?],
[K3]; and another function F, of [K], [K?], [K?] (where
[K]....[K]. ... depend on the three-dimensional metric y;;
and a fiducial metric 7;;). This choice naturally vastly expands
the phenomenology of MTMG in general. After investigating

the background equations of motion, we have studied the
tensor mode perturbations, and found that the two polar-
izations of the gravitational waves acquire a nontrivial mass as
expected.

Later on, we impose the conditions mentioned above for
u?> >0 and finiteness of G.;. We have found that this
model can lead to three possible different phenomenolo-
gies, which depend on two functions Z; and E, which,
in turn, depend on F, and their derivatives. In fact, we
find that if E; #0, then G = Gy (evidently MTMG
does not belong to this class). If instead Z; = 0 [or much
smaller than k?/(a®H?)] but E, # 0, in general the speed of
propagation for each matter field will be modified. Finally
for the subclass of theories for which E; = 0 = E,, matter
component has the standard speed of propagation, whereas
dust acquires a nontrivial G/ Gy. MTMG belongs to this
last class. For this last class we proceed to impose the
conditions y?> > 0 and G4 < o0, and we give an explicit
example which satisfies these constraints at all times for
any background dynamics.

In this last case, the expression for G/ Gy is explicitly
given in Appendix D. It is interesting to notice that the mass
squared of the graviton could be vanishing, whereas
G # Gy. This is due to the fact that at linear level, the
contributions to G.s come from the would-be-unstable
propagating scalar mode of dRGT which in this minimal
theory is nondynamical and as such can be integrated out,
leading though to nonstandard modifications to the coef-
ficients of the linear perturbation equations of motion.

We have extended the study of finiteness to other linear
perturbation observables as to see how their late time
dynamics are affected. In particular, we have looked at the
observable which describes the ISW-galaxy correlation
effects. Indeed we find that imposing x> > 0 and G < oo
automatically leads to the absence of poles for such
observables.

The result of this work is interesting since it provides a
set of eMTMG which, like GR, leads to cosmological
observables which are always well defined, no matter
which dynamics the background might have. These
requirements can turn out to be crucial in a world which
has to deal with a weak gravity description of large-scale
gravitational interactions. We think these minimal models
could have an interesting phenomenology leading to new
possibilities for a massive graviton to play a nontrivial role
in our physical world.
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APPENDIX A: VARIATIONAL FORMULAS

We find it useful to write down some identities which are
to be used when we find the equations of motion of the
theory10

) | R
oK' = Eﬁlﬂ/ﬂayliv (Al)
ok = Lqisit, _ _yeiF A2
M= Vv == jCiv (A2)
S(KHKT) = 76y, (A3)
dt(lC’j/C/ ) == 7ll}/ll = _2Mzij7ﬂyli’ (A4)
KCEICHICK)) = SICi it A
5( Nk i)—i i4 Y ii» ( 5)
o 3 s e
0,(K'KIC) = S K7y = =3MK 81"y, (A6)

where a 0 represents the variation with respect to a
dynamical field, and o, the time derivative of the explicitly
time dependent fields.

Now let us turn our attention to the analogue properties
of the other squared-root matrix, namely &';. Then we find

A T 1
O = S Koy i = =S K iy iy Sy

1 . .
= —Eﬁ’jyfk&/ki, (A7)
. 1. .. .. i KPP
o8R! = EIC’/'YJIVH = M?’ij’C IJ’lejk, (AS)
S(KK%;) = 877 = v 7 jiy"™ Y i (A9)
0,(];87) = 2My'y, Ct,, (A10)
i @) @k 3 ais jl 3 ai s mi,,jk
5(] R R i) = 5@ oy = —Eﬁﬂ’zﬁf Y50V km>»
(A11)
o 3 . .
0,(K; 8/, 85 = Eﬁlﬂ/ﬂm =3MK 'y, (A12)

“In the following we will make use of the identity

S{Tr[VX"|} = 2 Tr[VX"25X].

APPENDIX B: MTMG SUBCASE

In the theory of MTMG, a subclass of the eMTMG, we
have for the precursor part of the Lagrangian the following
structure

2M2
Cl\/_ C2\/7

Lyrvc 2 ] = c3v7[K] = can/7]
i
= N c—+c IC——l—c K| +cal,
3 NV | @l e8]+ e
(B1)
where, by definition
gabﬁbc = yabybc’
K] =[87]
so that
detﬁzzz, ﬁ:detﬁ, B2
(®) , r (8) (B2)

supposing that det(&) > 0. By using the Cayley-Hamilton
(CH) theorem'' we have

(R3] - []][87] + % ([R] - [82)[8] - 3det(K) =0,
(B3)
so that
det(8) = 1 [8] - S [R][87] + [RP. (B4)

We also have from the CH theorem that:

3

(7] = 8P+ (] - [87)) - det(R)[K] =0, (BS)
and
K)det(S) = 5 (S - [8).  (Bo)
Since

"For a three-dimensional matrix, A, one has:
3 2 1 2 2
A’ —tr(A)A +§[(trA) —tr(A?)]A — det(A)I; = 0,

out of which we can take the trace or multiply it by A~! to find
new useful relations.
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m>M3
Lyvitve D — ) ENVTler det(8) + ¢y [K] det(K)

+ c3[K] + ¢4, (B7)
we have that for MTMG:
A — ¢, (510 - 8]0+ g7 )
PSP -8 +ol8] e (BY

Along the same lines one finds

mM>3 1
Lyrvc 2 2 PM[_Cl [K]\/]:/—ECZ\/):/([K]Z - [K?))
— 03\/}7]
— =P b5 ]+ el P
14
-+ e V) (B9)
where
,Cab’Cbc = }7ab7bc9 (BlO)
so that
det(K)? = 7 (B11)
4
or
VI e
¥ det(K), (B12)

supposing that det(K) > 0. Then on using once more the
CH theorem one finds

det(K) = 5 K7 = S IKIIK?] + ¢ [KF, (B13)

and, finally, that

FY™G = ¢,[1] + 2 (P ~ [K7)

+e (50015 000+ GIKP). (B14)

APPENDIX C: SELF-ACCELERATING BRANCH

Let us once more consider the nontrivial constraint
equation Eq. (45), that we rewrite here for later convenience

H

z|=

(XZFZ’[K:] + 2XF2,[K2] + 3F2,[K3])

X
N (N+HX) (Fiis) +2XF) g + 3X?F ) g3)). (C1)

We can define a self-accelerating branch for these extended
minimal models, as the solution of this constraint which
does not fix the ratio M /N. For this to happen we require

X2F2,[]q + ZXFZ,[/CZ] + 3F2,[}C3] == O, (CZ)

which is an algebraic equation for X. In particular, this
equation implies that X = X, = constant. Since, from our
assumptions X, # 0, in general, Eq. (C1) also leads to

Vice versa, if we assume Eq. (C3) holding true, then since
we assume that HM /N does not vanish, we are left to
impose that also Eq. (C2) needs to be satisfied. Then both
Egs. (C2) and (C3) must hold at the same time, meaning
that X, has to be a solution for both these equations. In this
case, we will name this possibility as the self-accelerating
solution. This solution might not exist for all possible F; ,
functions, but there will be subclass of theories admitting
its presence. In particular MTMG is one of them.

For the self-accelerating branch, as defined here, we
find that both the background and the scalar/vector linear
perturbation equations behave exactly as in General
Relativity, and in particular, 3 Mjm*F; reduce to an
effective cosmological constant contribution to the total
matter sector. In summary, for this solution, all the
phenomenology (up to linear perturbations in cosmology)
coincide with GR except for the tensor modes which
acquire a nonzero mass (possibly time dependent).

APPENDIX D: FULL EXPRESSION OF G,;/Gy

In the following we give a full expression for G.¢/Gy
which can be written as
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Ger _ 1
Gy A

6 6
{—6750§2X3 <X3§% +2X705 42X + 54’3) (X5§2 - X*r( - 2X2rg3 - 2Xrl - s ;ﬁ)

8 10 12 2 145384(Q,, + 92 x10
x (XSC% +3X0+ X3 +gci> m* + 3375H2m? [526‘1‘ (Qm +§)X“ s : s

L 16[@, 92 + GG, 1N <<1 z(szm ., % s 1360 +%>c:%> o 8r691‘¢%>xg

3 5
4 2( #7272 4
+ 8&2‘ Qm +§ é’% + 20&3 (Qm + 2) 52 _ 8?C1(€1€3 + 6C2) X7
5 3 9
M(Q, + BEEG 185(AG +5)) o 14400+ 588G + T X

5 9 25

L (72080, + ) 1BGOE GG+ TGO 5 224r(GGGE +7 60 T3 OX
25 15 15
252 | 158 vay2
Sl (Czal T )C‘*X T04Xr3C} 8641

25 25 125

+ 10H*X?(15X3¢F 4 40X2(3 + 50X¢5 + 3653)2}, (D1)

6 H2(15X38% 4 40X28% 4 50XE3 + 363)\ 2
A = 2250X2 <x3z52 <X3§% +2X%83 + 2X &3 +§Ci> m? + (I5X°¢, £ & g“)) . (D2)

15

where we can explicitly see that the denominator A never vanishes. We give in the following the general expression for Z,
defined in Eq. (125), which can be written as

 1Gy H?(15X38% + 40X285 + 50X83 + 3642)

Z — A )
2Gy  30XPE(X3CT +2X203 +2XE5 + 843)m? + 2HA(15X38T + 40X283 + 50X8% + 3647)

(D3)

which never blows up to infinity for any dynamics of X(¢), and still reduces to unity when m/H — 0, i.e. at early times.

APPENDIX E: CASE WITH MASSLESS GRAVITATIONAL WAVES

For the special symmetric12 model {, = {3 =, = 0, the tensor modes become effectively massless on the FLRW
background, for any X(#). It is interesting to note that even if 4> vanishes, still we might have nontrivial dynamics in the
scalar sector as

Ger _ 1 =3EV2X° + 3X3(XYrL} + 5 + )Y ™ g P
Gy (YeX? + 1) ’ T HY " T 3MRH?

for{, =¢3=¢,=0, (El)

which can be still less than unity (but positive) today.
The background function X defined in (125) and shown in Appendix D reduces to

5 27380 4 3OV (XY + 4 22 yom o —_Pn
2(YEX3 +1)? ' H*' " 3MRH?

for{,=03=0,=0. (E2)

Here, we have mentioned this choice for the parameters only as to give already a nontrivial example despite vanishing
mass for gravitational waves. In the rest of the present paper we shall mainly consider the more general cases, i.e. those
shown in Sec. VIE or VIF, with massive gravitational waves.

"2We name it “symmetric” as in this case Eqs. (133) and (134) mirror each other (a cosmological constant in the fiducial sector can
always be added without modifying any bit of the theory).
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