

Timing: Before 5pm

NAS, Centre for Theoretical Physics and Natural
Philosophy
Mahidol University, Nakhonsawan Campus
Associate Degree Program Computer Science
Quantum Mechanics
Assignment-I, Due-Date: 5th February, 2024

Sciama's Terma 2024, II-Semester
Max mark: 50

Attempt any five questions totalling 50 Marks

1. (a) Construct an orthonormal basis starting with $\vec{A}=3 \hat{i}+4 \hat{j}$ and $\vec{B}=2 \hat{i}-6 \hat{j}$.
(b) Can you generate another orthonormal basis starting with these basis? If so, produce another.
2. (a) Show how to go from the basis

$$
|I\rangle=\left(\begin{array}{l}
3 \\
0 \\
0
\end{array}\right),|I I\rangle=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right),|I I I\rangle=\left(\begin{array}{l}
0 \\
2 \\
5
\end{array}\right),
$$

to the orthonormal basis:

$$
|1\rangle=\left(\begin{array}{l}
3 \tag{10}\\
0 \\
0
\end{array}\right),|2\rangle=\left(\begin{array}{l}
0 \\
1 \\
2
\end{array}\right),|3\rangle=\left(\begin{array}{l}
0 \\
2 \\
5
\end{array}\right),
$$

3. (a) Prove the Schwarz inequality.
(b) When will this equality be satisfied? Does this agree with your experience with arrows?
(c) Prove the Triangle inequality starting with $|V+W|^{2}$. You must use $\operatorname{Re}\langle V \mid W\rangle \leq$ $|\langle V \mid W\rangle|$. Find the condition for equality.
4. In a vector space \mathbb{V}^{n}, prove that the set of vectors $\left\{\left|V_{\perp}^{1}, V_{\perp}^{2}, V_{\perp}^{3}, \ldots\right\rangle\right\}$ orthogonal to any vector $|V\rangle \neq 0$, form a vector space \mathbb{V}^{n-1}.
5. Suppose $\mathbb{V}_{1}^{n_{1}}$ and $\mathbb{V}_{2}^{n_{2}}$ are two subspaces such that any element of \mathbb{V}_{1} is orthogonal to any element of \mathbb{V}_{2}. Show that the dimensionality of $\mathbb{V}_{1} \oplus \mathbb{V}_{2}$ is $n_{1}+n 2$.
6. An operator Ω is given by the matrix

$$
\Omega=\left(\begin{array}{lll}
0 & 0 & 1 \tag{1}\\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Find its action.

Best wishes

