Timing: Before 9 AM

NAS, Centre for Theoretical Physics and Natural
Philosophy
Mahidol University, Nakhonsawan Campus
NWTP-512
Quantum Mechanics
Assignment-II, Due-Date: February 29, 2024

Sciama's Terma 2024, II-Semester
Max mark: 40

Attempt All

1. (a) Show that a product of unitary operators is unitary.
(b) Assuming on the backdrop 1) What a determinant is, 2) that $\operatorname{det} \Omega^{T}=\operatorname{det} \Omega$ (where, T is Transpose), 3) That the determinant of the product of matrices is the product of the determinant [If you do not know, verify these properties for a two dimensional case

$$
\Omega=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)
$$

with $\operatorname{det} \Omega=(\alpha \delta-\beta \gamma)]$. Prove that the determinant of a unitary matrix is a complex number with unit modulous.
2. Verify that the following matrices are unitary.

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & i \\
i & 1
\end{array}\right), \frac{1}{2}\left(\begin{array}{ll}
1+i & 1-i \\
1-i & 1+i
\end{array}\right) .
$$

Verify that the determinant is of the form $e^{i \theta}$ in each case. Are any of the above matrices Hermitian?
3. The trace of a matrix is equal to the sum of its diagonal matrix elements

$$
\text { trace } \Omega=\Sigma_{i} \Omega_{i i}
$$

Show that
(a) $\operatorname{Tr}(\Omega \Lambda)=\operatorname{Tr}(\Lambda \Omega)$
(b) $\operatorname{Tr}(\Sigma \Lambda \theta)=\operatorname{Tr}(\Lambda \theta \Omega)=\operatorname{Tr}(\theta \Omega \Lambda)$ (Cyclic permutation)
(c) The trace of an operator is unaffeted by the unitary change of a basis $i \rightarrow U i$.
4. Show that the determinant of a matrix is unaffected by unitary change of basis.
5. (a) Find the Eigen values and normalized eigen vectors of the matrix

$$
\Omega=\left(\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 0 \\
0 & 1 & 4
\end{array}\right)
$$

(b) Is the matrix Hermitian? Are the Eigen vectors orthogonal?

Best wishes

Page 2

