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Background cosmological dynamics for a universe with matter, a scalar field non-minimally derivative
coupling to Einstein tensor under power-law potential and holographic vacuum energy is considered here.
The holographic IR cutoff scale is apparent horizon which, for accelerating universe, forms a trapped null
surface in the same spirit as blackhole’s event horizon. For non-flat case, effective gravitational constant
cannot be expressed in the Friedmann equation. Therefore holographic vacuum density is defined with standard
gravitational constant instead of the effective one. Dynamical and stability analysis shows four independent
fixed points. One fixed point is stable and it corresponds to w.; = —1. One branch of the stable fixed-
point solutions corresponds to de-Sitter expansion. The others are either unstable or saddle nodes. Numerical
integrations of the dynamical system are performed and plotted confronting with H(z) data. It is found that
for flat universe, H(z) observational data favors large negative value of NMDC coupling, . Larger holographic
contribution, ¢, and larger negative NMDC coupling increase slope and magnitude of the w.; and H(z).
Negative «, can contribute to phantom equation of state, w.; < —1. The NMDC-spatial curvature coupling
could have phantom energy contribution. Free negative spatial curvature term can also contribute to phantom
equation of state, but only with significantly large negative value of the spatial curvature. The model could
give phantom equation of state for k = —200 and high value of ¢ for both flat and open cases.

1. Introduction matter and scalar field is allowed. In this case, chameleon screening
mechanism is considered to evade the fifth force problem [22]. It
is found that only R¢ ,¢* and R*'¢ ¢, terms are necessary in the
coupling sector [23,24]. These couplings are motivated in lower energy
limits of higher dimensional theories or in conformal supergravity
[25,26]. Combining the two terms into the Einstein tensor coupling
to derivative of scalar field as G,,(V#$)(V'¢) gives rise to the non-
minimal derivative coupling (NMDC) gravity model and it can result in
de-Sitter expansion as seen in iteratures [27-50]. Further generalization

Present acceleration is a puzzle of contemporary cosmology. Dark
energy or modification of general relativity could result in the accel-
eration [1-9]. The acceleration corresponds to negative equation of
state, w < —1/3 and the observational favored value is w ~ —1 [10—
17]. Dark energy (DE) is hypothetical energy with repulsive pressure. It
could be cosmological constant or dynamical scalar fields. Having dark
energy content in the universe is equivalent to adding of extra degree
of freedom to the matter Lagrangian. Alternative way of achieving late
acceleration is the modification of general relativity, i.e. modifying
the left side of the Einstein field equation, that is, the gravitational

of scalar-tensor theories, with at most second-order derivative with
respect to dynamical variables, are such as galileons [51-53], Fab-

sector. There are many ways of gravitational modifying such as con-
sidering function of Ricci scalar [18], function of Ricci tensor and
Riemann tensor instead of using the Einstein-Hilbert Lagrangian [19].
Many other models are of mixed types that allow couplings among
barotropic fluid, scalar and gravitational sectors. As a result, there are
rich implications of these couplings in scalar-tensor theories [4,20,21]
such as mediation of long-range fifth force when coupling between
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Four [54], Horndeski action [55-57] and GLPV theories [58]. The
G,,(V*$)(V'¢p) term is a sub-class (the Gs term) of the Horndeski
action.

Action of the NMDC coupling to gravity with other matters, e.g. dark
matter (DM), matter fields and cosmological constant, is given by

R leg,, + kG, ] .
S=/d4X\/—_g{ T i e O ¢)—V(¢)} +Spa (D
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The parameter ¢ is +1 for canonical and phantom cases. The coupling
constant x has mass~2 dimension. Sign of the coupling « could either
enhance or reduce contribution of the free kinetic term [28] which in
turn affects power spectral index, tensor-to-scalar ratio, evolution of the
equation of state and other observational parameters [32,36,59-61].
Observational data has put tight constraints on form of scalar potentials
for viability of the NMDC inflationary model in metric formalism [44,
48] while, in Palatini formalism, the quatic power-law inflationary
potential is completely ruled out by the CMB data [62-64]. NMDC
inflation, if the initial scalar field speed is sufficiently fast, can end up
with quasi-de Sitter expansion with graceful exits. Even without scalar
potential, V(¢), which is to be converted to kinetic energy, quasi-de
Sitter expansion with graceful exits can still happen. For a power-law
inflationary potential V(¢) = Vy¢" with n = 1.5, double inflation,
i.e. kinetic driving and potential driving, with sub-Planckian initial
scalar field value can solve the horizon problem with large coupling
and very small scalar mass [65]. All of these are good aspects of the
NMDC inflationary model. At last, shortcomings of the NMDC inflation
are the prediction of too large tensor-to-scalar ratio and the absence
of graceful exits for Higgs-like potential or for n < 2 [66,67]. NMDC
inflation with power-law potential is hence disfavored by CMB data
in this setting. At late time, the model could result in w — —1 for a
power-law potential V' (¢) = V,¢" with n < 2 ending with oscillating
scale factor and it results in Big Rip singularity for n > 2 [31,35,36,68].
Other potentials such as Higgs-like and exponential potentials for the
case have been studied [37]. A detail qualitative study of NMDC
cosmological dynamics is reported [66].

In searching for unifying theory of gravitation and quantum behav-
ior, a compelling holographic principle comes naturally to exist [69].
Following this, Susskind describes the principle in context of string the-
ory [70]. Maldacena proposes AdS/CFT correspondence which views
conformal field theory on the surface of a bulk region as hologram of
corresponding string theory in the bulk [71]. Surface area enclosing
volumic bulk is linked to entropy of the bulk and this is known as
Bekenstein-Hawking entropy [72-76]. Since any surface area can be
mostly sub-divided to the smallest area in Planck scale hence there is
limited information of quantum states of the surface area. Therefore,
there must be an maximum entropy bound for a bulk region [77,78].
A blackhole is created when information exceeds the entropy bound.
For a blackhole, its entropy is proportional to surface area .S ~ A/4G
or square of length scale of a blackhole LZBH. Blackhole hence con-
tains holographic information on its event horizon [79]. Applying the
entropy bound hypothesis to cosmology, equation of state should be
bounded within w < 1 and the universe should be infinite [80] In this
view, there is a relation p, o< SL™* between UV energy scale (p,), and
IR cosmic length scale (L) [81-84]. At surface of boundary, there is a
hologram of information in the cosmic bulk. This implies
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as IR cutoff to cosmological constant density. The factor ¢ is a constant
(0 £ ¢ < 1) [85]. Hence this could solve fine-tuning problem. One
support for the holographic principle is that the Casimir energy is
found to be proportional to the horizon size [86]. When considering
domination of cosmological constant in the universe and the length
scale is Hubble horizon, L ~ H~!, i.e. flat case of apparent horizon,
dark energy equation of state is dust-like, w =~ 0 which is not ac-
ceptable [84]. Alternatively, using particle horizon as cutoff IR length
scale [80,87] gives w > —1/3 [85]. To obtain accelerating universe
with acceptable equation of state, w < —1/3, future event horizon IR
cutoff is considered [85,88]. Using future event horizon can also solve
cosmic coincidence problem for at least N > 60 inflationary e-folding
number. With future event horizon cutoff, since phantom equation
of state is observationally allowed and it violates the second law of
thermodynamics [89]. Existing of turning point of Hubble parameter
also violates the Null Energy Condition because, with ¢ < 1, the future
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event horizon cutoff model results in w < —1 [90]. In order to alleviate
these problems, interaction between DM and DE is introduced so that
effective equation of state can cross the phantom barrier. The interac-
tion can also solve of the cosmic coincidence problem [88,91]. However
the original holographic dark energy (HDE) model with future event
horizon cutoff in flat universe suffers from cosmic age problem, that
is, it predicts a universe with younger age than those of high-z objects
unless forcing 4 < 0.56 [92] although this can be slightly avoidable in
non-flat case [93] or allowing DM-DE interaction. Later a few newer
cutoff scales have been proposed such as agegraphic holographic dark
energy [94-96] and Ricci holographic dark energy which have been
ruled out by observations [97-99]. The other models of cutoff length
scale are such as Granda and Oliveros [100,101] and other models as
seen in [102-106]. The Granda and Oliveros cutoff model cannot satisfy
the expansion data when combined with perturbation data [107]. Good
features and many problems can be cured with time-varying ¢ [108] but
this is to add a new parameter to the theory. Review on HDE models
can be seen in [109].

Cosmological horizon of the IR cutoff scale should have similar
characters to blackhole’s event horizon. Cosmic bulk volume should
be enclosed by a trapped null surface, of which horizon can never
be reached by light signal. In a universe under cosmic acceleration,
trapped null surface exists when using apparent horizon cutoff scale
such that light signal can never reach the apparent horizon. Connection
of the first law of thermodynamics to the Friedmann equation [110]
suggests definition of Cai-Kim temperature, T = 1/(2zR,) defined
with the size of apparent horizon, R, = 1/4/H?+ k/a?. When the
curvature, k, is 0, the apparent horizon is the Hubble length. While
the HDE is usually considered to be vacuum energy, scalar field could
also be negative pressure cosmic component. It has been known that,
to solve the present phantom-crossing problem, one cannot use single
canonical scalar field model nor some k-essence models (due to no-go
theorem for the k-essence case) [111]. Quintom models composed of
both quintessence and phantom kinetic terms [112] are able to result
in phantom crossing, however they usually process one ghost degree
of freedom [113]. Avoiding the ghost, complex scalar field versions
of quintom are considered however suffering from Q-ball formation.
Hessence model, a quintom-like model with non-canonical complex
scalar field, can cure the Q-ball problem with conservative charge of
the theory [114]. The hessence model is considered in holographic
scenario where the hessence scalar field DE density is cutoff by future
event horizon. This model can have phantom-crossing behavior and it
is known as holographic hessence model [115].

In context of scalar-tensor theories, a unification of inflation and
late-time phantom-crossing can be possible when considering dilaton-
like self-coupling of scalar kinetic term or with generalized version of
the holographic cutoffs [116]. In Brans-Dicke gravity (Jordan frame),
using Hubble scale cutoff and particle horizon cutoff in original HDE
model cannot accelerate the expansion while using future event horizon
cutoff can achieve the acceleration [117]. Another HDE model with
Hubble scale cutoff in scalar-tensor theories, allowing DM-DE inter-
action, can achieve deceleration-to-acceleration transition [118]. In
Brans-Dicke gravity, the scalar potential V' (¢) is necessary for the HDE
model with Hubble scale cutoff to be viable [119,120]. There are also
other interests of scalar field non-minimal coupling to gravity (NMC)
term in HDE cosmology with Hubble scale cutoff [121-123]. Consider-
ing NMDC model, HDE NMDC flat cosmology with Hubble scale cutoff
has been investigated [124]. However, for power-law and exponential
potential, the model gives mismatched inflationary parameters [61].

In this work, we consider apparent horizon cutoff in non-flat HDE
cosmology. Matter contents are NMDC scalar field, holographic vac-
uum energy and dust matter. We study dynamical effects of HDE,
NMDC field and spatial curvature with kinematical implication of late-
time expansion. We perform dynamical analysis to the system and we
compare our results to the observed expansion history obtained from
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SNIa only schematically. Recent work by [125] considers qualitatively
cosmological dynamics of NMDC gravity for non-flat universe without
holographic effects. The work agrees with ours in non-holographic
limit. In addition, we show stability analysis of fixed points of the
model. Indeed, the sign of the coupling x in Eq. (1) could be opposite
to the sign of the eg,, term. One can see that phantom effect with
e = -1 is not the only negative kinetic energy contribution, but
also the NMDC term. Hence, for ¢ = 1, the negative kinetic energy
contribution can as well come from the NMDC sector. We introduce the
field equation in Section 2. Considerations of flat case and non-flat case
are of Sections 3 and 4 where idea of using gravitational constant in
holographic vacuum density is discussed. Dynamical stability analysis
is shown in Section 4 and numerical integration kinematic results on
Hubble parameter and equation of state parameter are presented in
Section 5. At last, conclusion and discussion are in Section 6.

2. Holographic dark energy with NMDC gravity effect

The field equation derived from the NMDC action (1) is
G,, =81G (Tg"j +T@ + K@M) — Ag,, - 3

The stress tensor of dust matter is T‘ET). The scalar field stress tensor,

T(ﬂd’v), and the NMDC stress tensor, O, read

Hvs
T = &V, $)(V,$) - gg,,v(w»z -8,V (¢9), @
0,, = —%(Vﬂzp)(vmm +2(V D)V, $R") + (VD VDR 05
+(V, VD)V, h) (5)
(V5,00 - SOVB7Gy + gy [-3 (VI BV,Y )
+3@* - (VR ©®)
There are conservations
[eg" +kG"IV,V b = =V, )
VAT +x6,,] = 0, ®

where V, = dV(¢)/d¢. These conservations are consequence of the
Bianchi identity V#G,, = 0 and the conservation of matter field
V”Tﬁl";) = 0. Dust matter density is denoted as p,. Quantum grav-
ity motivates phenomenological holographic energy scale cutoff to
the vacuum energy density, implying that it could not exceed p, =
A/(87G) = 3c?/(8xGL?). The IR cutoff length scale, L motivated from
quantum gravity effect, is introduced, not in the classical Lagrangian,
but in the vacuum density. Other separated conservation equations are
ppr+3H(py + Py) =0 and p,, = —3Hp,, where P, is pressure of the
holographic vacuum energy.

3. Flat case

In flat case, without the holographic effect, the NMDC Friedmann
equation can be viewed in two ways,

H? = &TTG [%qsz(g —9kH) +V(d)+py + ﬂm] ’ ©
or

2 _ 87Gest £ 15
= 2 58+ V@) + 04+ pn) - a0

Both equations are the same, however it is possible to interpret them
in two different pictures, i.e. either modification of the kinetic term of
the scalar field, (1/2)¢*(e — 9x H?) or modification of the gravitational
constant. The Eq. (9) can be viewed as a flat FLRW universe evolving
with conventional gravitational constant, G, and the universe is filled
with matter field, vacuum energy and the NMDC (or phantom NMDC)
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field while Eq. (10) represents a universe with effective gravitational
constant G,

G

_, an
1 + 122Gk ?

Geff(qs) =
and the universe is filled with matter field, vacuum energy and canon-
ical (or phantom) field. The conservation of the NMDC field is a result
of Eq. (7), the Klein—-Gordon equation,

Ve 6xHHd¢
£—3kH? £-3kH?
From now on, we consider only £ = 1 which is non-phantom case. These
give us two choices of gravitational constant in making definitions of
the vacuum energy density (Eq. (2)). The vacuum energy density should
read either p, = 3c¢*/(8zGL?) or p, = 3c?/(8xG;L?) according to
which pictures we interpret. Apparent horizon cutoff length scale for
flat case is the Hubble length, i.e. L = H~!. Hence the holographic
vacuum energy are either

$+3H¢p=— 12)

3 2H2
pa= ;ﬂG : (13)
or
2172 2172
= 3CHT _3CTH | 10akGéR). (14)

A7 8nGey 871G

The second choice, i.e. choosing Egs. (10) and (14), has been shown in
[61] to have shortcomings in giving consistent inflationary parameters
and, moreover at late time, when constrained with variation rate of
gravitational constant, it favors x > 0. At non-holographic limit, this is
in conflict with the results given in [44] of which x < 0 is required for
inflation. Note that notation in [44] differs from ours. Therefore, for the
flat case, we should restrict our consideration to the first choice. That
is Eq. (13), p, = 3c¢>H?/8zG, with the Friedmann equation (9). We
will see in the next sections if there is any modification to its dynamics
when the space is curved.

4. Non-flat case

Non-zero curvature case allows richer characters of the holographic
NMDC cosmology. With non-zero k, cosmological dynamical behavior
could be modified with the curvature terms. The apparent horizon,

RA=; (15)

VH? +k/a? |
reduces to Hubble length when taking k& = 0. For the sake of analogy
to the flat case, we should consider the holographic vacuum density in
two cases. These are p, = 3c>H?/8zGR3 and p, = 3¢?/87G o R%. The
field equation (3) gives a modified Friedmann equation,

2k _85G [ (opn, 3K
H+a2_ 3{21;<9H+a2

+ V() + Py +pA} . (16)

which, in similar spirit to G.g(¢) in the flat case (Eq. (10)), is expressed

as

3kkd?
2

3k p2
3H? + == 87Gest [‘% + V() +

+pm+pA] B a7)

where Gog($) = G/(1+ 122Gk ?). Since there is a NMDC-curvature
coupling term, 3xk¢?/a® in Eq. (17), one can see that the MMDGC
character cannot be fully extracted into the Gg(¢) term. This is unlike
the flat case (k = 0) (Eq. (10)) of which the NMDC effect is fully incor-
porated in the Gg. It is known that for the NMDC theory, one cannot
express effective gravitational constant at the Lagrangian level. For the
flat case, the effective gravitational constant may be written at the
Friedmann equation level. Since consideration of non-zero curvature is
more generic, we conclude that effective gravitational constant cannot
be realized at the Friedmann equation level. As a result, using G
in vacuum energy density as p, = 3c?/87G. Ri is not plausible. We
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shall therefore consider only the p, = 3c2/ SﬂGRi case. The Friedmann
equation (16) and the equation,

i2
0V R CE LAy S PR 2H +3H? +4Hdg™! -k
a? 2 a?

—V(¢)+Pm+PA} s (18)

are derived from the field equation (3) and the non-flat Klein—-Gordon

equation is derived from Eq. (7),

~Vy +6xHHd — 6k Hpk[a>

1-3x(H? + k/a?)

which can be rewritten as,

$+3H$ = , (19)

é [1 -3k (H2 + i)] +3H¢ [1 —x <2H+3H2 + 5)] = —V,. (20)

a? a?
As seen in the above field equations, this is the FLRW universe with
gravitational constant G. The scalar kinetic term (¢ term) and scalar
dynamical term (¢ term) are all modified with the NMDC coupling.
We notice that non-minimal derivative coupling to gravity (x term)
does not only couple to only the kinematic sector, i.e. to H or H but
also couples to spatial curvature k. Hence the spatial curvature could
have some effects to the dynamics. In this case, the holographic vacuum
energy density is

3c2H? 3c? )k
= = — |\H"+—=). 21
PA SJIGRi 872G 2 21

Considering power-law potential, V(¢) = V,¢" for ¥, > 0 and » is an
even positive number, we define dimensionless dynamical variables as
(see e.g. [126] for quintessence case),

h2 8xGVy" , h2
= 82Go s =2 of . r=-127Gk¢?, s= ——4”Gkk¢ s
6H? 3H? a’H?
0, = g (14K ), g =-—F
m=T3pr 0 A=C a2H?) KT 2’

(22)

such that the Friedmann equation (16) is written as

l=x4+y+r+s+Q,+2,+82. (23)

These dimensionless variables are not independent. Some of these
variables can be expressed in terms of the others, i.e.
Qu=c*(1-9), and s=-—F. (24)

Hence the Friedmann constraint becomes

rQ )
1 = x+y+r—T+Qm+c(1—_Qk)+.Qk, (25)
or
rQ 2
Q. = 1—x—y—r+T—c(l—Qk)—_Qk. (26)

We can express £2,, in terms of x, y, r, 2,. Autonomous system of these
variables is therefore

X' = 2x(e-96),
y = 2y<%nu+e),
o= =2r6, 27)

W = u(e —6—u,
Q=20 e~ 1),
where we define

PP B |

H$' H?

, and u= i . (28)
H¢
According to the field equations, 3H? + 3k/a®> = 8zGp,, and 2H +

3H? + k/a®> = -87GP,, the effective equation of state coefficient,
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Wegr = Prot/ Prot» is hence

—1+Q2e/3) +(2,/3)
-, :

(29)

Weff =
The autonomous system is closed because § and e can be expressed in
term of the other dynamical variables, i.e.
€= { —3r [c? (Q2 — 40 +3) — 2nuy + 4x(2, — 3) — 3y, + 3y

-2 +40, - 3]

+ 0x [2(@2 =3 +3x =3y - 2 +3] 417 (2] 22, +9) } /

{—18x(02 D) +22B+ Q) +6r [ — D)= x— 2 + 1] }

(30)

and

5 —18x (3¢* +2r —3) + 18ry + 422, — 3nuy (3¢ +r—3) 31)
—18x(c2 = 1) +2r2(3 + ;) + 6r[c2(2; — ) = x — 2, + 1]’

According to [36], there exists a relation among the variables u, r, x and

¥

2-n
2

n ne2
ryu” + 3kV,62 (87G) X7 =0 (32)

Hence, there exists another constraint u = u(x, y,r) where n, k, V), c are
numerical parameters. We shall solve the autonomous system straight-
forwardly, and exclude solutions that do not satisfy the constraint
(32). Fixed points are to be found as the system (27) is set to zero.
Stability of the fixed points is found considering linear perturbation,
x=x,+6x,y=y.+6y, r=r.+6r, u=u,+6u, and Q; = Q.+ 62,
in the autonomous system (27) where subscription ¢ denotes the fixed
points. Linearizing the autonomous system, the first order perturbation
can be expressed as

6x 6x
d oy oy
L s =M 6 |, (33
dN ou ou

582 682,

where Jacobian matrix M can be defined as

ax" o 9x 9x  dg X

oy oy 9y 4y 09
M=[or" o a9 r g1 34

’ ’ ' / ’
o.u oyu d,u o,u Og, u

GX.Q;( aJ"Ql/c 0, Ql,c a“'Ql,c agk Q;c at fixed points

and d,x’ ,0yx’, 0,x',9,x', dq, x’ denote differentiation of x’ with respect
to x,y,r,u and £, respectively. Performing linear stability analysis,
eigenvalues of the Jacobian matrix can identify stabilities of the fixed
points. The Jacobian is 5 x 5 matrix, hence there are five eigenvalues.
A fixed point is asymptotically stable if all eigenvalues are negative.
It is unstable if all eigenvalues are positive. A fixed point is saddle
point if at least one eigenvalue is positive. Linear stability theory fails to
determine stability when all eigenvalues are zero or when some are zero
and some are negative. In this case, we use numerical integration result
to determine stability of the fixed point. Characters of fixed points are
shown in Table 1.

4.0.1. Fixed point (a)
In this case the eigenvalues reads
3
M1=O» M2=1= M3=§, /44=3, ll5=3- (35)
Since one eigenvalue is zero and others are positive, this point rep-
resents an unstable node for all » and k. The dynamical parameter r
is arbitrary in range 0 < r < | — ¢? whereas the parameter ¢ ranges
within 0 < ¢ < 1. Substituting fixed points into constraint Egs. (24)
and (26), we find that density parameter of matter and holographic
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Table 1
Fixed points expressed in all dynamical variables and their stabilities.
Names  Fixed points wey  Stability  Existence
Xe Ye re Se U Qe Q4 Qe
(a) 0 0 r 0 0 0 c? I-c2—r O Unstable  Case (1): r =0 with x #0,
Case (2): 0<r <1—c* with k <0
(b) 0 1-¢? 0 0 0 0 c? 0 -1 Stable For Vi
© =<0 WD g 0 0 e 0 -1 Saddle  For x <0
(d) 1-¢? 0 0 0 0 0 c? 0 1 Saddle Vo=0and k =0
effect are Q. = 1 —¢> —r and Q,, = c? respectively. The point 4.0.3. Fixed point (c)

corresponds to weg = 0. Substituting the fixed point coordinate into
Eq. (30), we find ¢ = 3/2. With e = —H / H?, the fixed point corresponds
to dust-dominated solution,

_ 2
T3(t-1)

H(®) or a(r) = ay(t — t)*°, (36)

where a, and ¢, are an initial value of scale factor and an initial value
of time respectively. Integrating r = r, = — 122Gk ¢?, gives a solution

=,/ —" -
o0 = V TTage 10 F o

where ¢, is some initial values. These solutions do not have any
holographic effects. For the scalar field to be real, it is either case (1):
r = 0 (ie. ¢ = 0) for all real value of k except x = 0 or case (2):
0 < r < 1—c? with « < 0. Substituting these solutions into dimensionless
variables in Eq. (22), for r = 0 and for all real value of «, we have
constant field solution, ¢ = ¢,. For 0 < r < 1—¢? and k < 0, then ¢ 1,
recovering the NMDC result reported earlier [36]. The point (a) is the
effective matter-dominated case where there are two components, £,
and Q, driving evolution of the universe. If there is no holographic
effect, the point is purely matter-dominating fixed point, 2,. = 1.
If there is only holographic component, without any other matter in
flat universe, ¢ = 1 is allowed and this is not a singularity. This case
corresponds to £2,. = 1 which gives dust-like evolution as mentioned
by Hsu in [84].

37

4.0.2. Fixed point (b)
The eigenvalues are

=0, pp =0, u3 =-3, py=-3, ps=-2. (38)

Since the eigenvalues are zero and negative, this point is non-
hyperbolic and the linear stability analysis fails to identify character
of the fixed point. The point exists for all » with equation of state
corresponds to that of cosmological constant, i.e. weg = —1. With
the constraint Egs. (24) and (26), we have 2,,. = 0 and 2,, = 2
respectively. At this point, the potential and holographic effect play a
role of cosmological constant solution as £, — 0 (asymtotically flat)
at late time, t - oo. The fixed point and the constraints (24) and (26)
imply Q. =0 and Q. = ¢2. With Eq. (30), ¢ = 0. From ¢ = —H /H?,

H=++/4, or a@) = aoei‘/ﬂ', (39)

where 4, > 0 is constant. Using definition of y, the scalar solution is a
constant function, i.e.

34,1 —c? 0
(,,:(M) .

872GV, (40)

where 4, = 82GV,¢;/ [3(1 - ¢?)| . Using the solutions (39) and (40) in
(22), we can see qualitatively that, x - x, =0,y > y. =1 — 2 r—
ro=0u—>u =002 — 2.=0ast — oo for any real value of n
and for any real value of « with ¥, > 0 and 0 < ¢ < 1. Moreover, given
small numerical perturbation of initial condition around the fixed point
in numerical integration result, evolution of the autonomous system is
presented in Fig. 1. This points out that the fixed point (b) is a stable
node.

This point has eigenvalues,

Hp==3, mp=-3, u3=-2, =0, us=0, (41)

which are zero and negative. It is also a non-hyperbolic point as similar
to the point (b) and the linear stability fails to tell character of the
point. We will use numerical integration to check its stability as we
did for the point (b). At the fixed point (c), the Egs. (30) and (31)
are ¢ = 0 and § = 0. From Eq. (29), the point (c) corresponds to
wer = —1. Since NMDC field could be a cause of acceleration, we
should find scalar field solution before finding the effect which is the
corresponding scale factor function. From Eq. (22) and the Table 1, we
see that x = 87G¢?/(6H?) and x, = (—1+c?)/2 as well as r = — 122Gk ¢?
and r, = 3(1-c?)/2. At x = x, (with H? = (3x)! to be found later) and
r=r,, one can find scalar field solution,

(=Y
872Gk

which is real if ¥ < 0. At the point (c), integrating the relation, ¢ =
—H/H? =0, we obtain a solution,

o) = (42)

T —1)+ ¢,

H =+, or a(t)=ayeVe!, (43)

where 4, is a constant. At the fixed point (c), x./r, = —1/3. Using the
definition of x and r in (22), we have x/r = —(9x H?)~! (where x = x,
and r = r,), leading to H? = (3x)~!. Since we have x < 0, therefore 1, =
(3x)7! < 0 and /%, is imaginary. We write /2, = i\/[4,] = i/\/3Ix],
therefore H = +i/ \/m, or a(t) = agyexpl+it/ \/m]. This corresponds
to an oscillating solution, i.e. a(t) = aO[cos(t/\/ﬁ) + isin(t/\/m)].
Taking only real part of the solution, the Hubble parameter reads,
H@) = -1/ \/m tan(z/ \/m). Numerical integration is performed
as small perturbation (from the fixed point (c)) is introduced to the
system. The results are presented in Fig. 2 manifesting divergent and
convergent evolution of the dimensionless parameters away from the
fixed point and to the fixed point (c). Therefore the point (c) is a saddle
node.

4.0.4. Fixed point (d)
In this case, the eigenvalues read,

H==6, up =06, puz=4, puy=3, us=0. (44)

This point represents a saddle point because the eigenvalues are mixed
positive and negative. The kinetic term and holographic vacuum den-
sity term are dominant. At this point, we obtain ¢ = —H/H? = 3,
corresponding to stiff fluid with weg = 1. This gives

1
H() = oy a(t) = ag(t —1p)'/3. (45)
The fixed point coordinate, x, = 1 — ¢2, with definition in Eq. (22)
implies
o) = 1/ 22 tn(t — 1) + ¢ (46)
~ V1226 o7

At y. = 0, with ¢() and H(r) solutions (45) and (46), we have y, =
8xGV,y¢"(t — ty) = 0 which is valid only when ¥}, = 0. The fixed point
condition r, = 0 = —12zGx¢? is valid only when x = 0.
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Fig. 1. Numerical integration of the autonomous system with respect to Ina around the fixed point

blue lines are numerical solutions with different initial conditions.
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Fig. 2. Numerical integration of the autonomous system with respect to Ina around the fixed points (c) where n =2 and ¢ = 0.9, the orange lines represent the fixed point and

the blue curves are the numerical solutions.

5. Numerical solutions
5.1. Flat case

The autonomous system can be integrated numerically. The flat case
wef(z) and H(z) solutions are presented in Fig. 3. The numerical solu-
tions are plotted confronting of the observed H(z) error bar at low-z.
The mean and error bar data used here is reported in [127]. These plots
are to present the numerical results schematically in comparison to the
data. They are without any statistical relevant between the numerical
solutions of our model to the observational data. To test and establish a
statistical significance (for example, to solve the Hubble tension), more
data from OHD+Pantheon+Masers should be necessary considered with
the MCMC analysis. AIC and BIC analysis are to be performed for model
selection. As seen in Fig. 3, positive NMDC coupling «x neither gives
any acceptable results for weg(z) nor H(z). Negative k is favored by
the data. However, the negative NMDC coupling needs to be large,
e.g. k = =200 in the unit of 8#G = 1, in order to schematically agree
with the H(z) data and its error bar. Larger value of ¢ is proportional to

larger holographic vacuum energy density. Therefore ¢ enhances both
slope and magnitude of the wg(z) and H(z). Large negative NMDC
coupling together with large fraction, ¢, of holographic vacuum density
can both enhance phantom effect. If the negative NMDC coupling is
sufficiently strong, we.g(z) can be in phantom region as seen in Fig. 3.

5.2. Non-flat case

Solutions for non-flat case are slightly different from those of the
flat case. It is hard to tell difference between results of the flat case
and the non-flat case. In order to check qualitative effect of the spatial
curvature, numerical value of k is chosen to be large, i.e. kK = +2000, in
order to magnify contribution of the curvature term that could affect
Wesr(z) and H(z). This is shown in Fig. 4. As seen in the figure, the
weer(z) and H(z) curves of the three cases (k = 0,k > 0,k < 0)
are possible to cross each others. The crossing is due to the coupling
between « and k in the Friedmann equations (16) and (18). In Eq. (16),
it is clear that NMDC terms with ¥ > 0 and k > 0 can contribute
to phantom equation of state, weg(z) < —1. This is possible also with
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Fig. 3. The figure shows numerical solutions of weg(z) and H(z) for n =2, that is V = V¢*> potential where V;, = 1/2. The parameter c is chosen to be 0,0.1,0.5,0.7 and 0.9. NMDC
coupling is k = —200,-10,-0.1,10. The spatial curvature is flat (k = 0). Considering H(z) results obtained from [127], the case of positive x is not favored while large negative
value of k, e.g. k = —200 matches the observatioanl data better. Greater c, e.g. ¢ = 0.9 (black curve) results in greater speed of expansion. Considering wx(z), greater negative x

and greater ¢ allows phantom crossing at present time or at near future.

x> 0and k < 0 (when |k|/a®> < 3H?). On the other hand, for the case
k < 0, this is possible only when k < 0 with |k|/a® > 3H?. Since wq =
[-1—QH/3H?) +(£2,/3)]1/(1 — 2,), in order to have wek(z) < —1, we
need H > 0. For k > 0, the denominator is greater than 1, reducing
the phantom contribution. If k < 0, the denominator is less than 1, the
phantom condition is 2H > |k|/a?.

The holographic term with apparent horizon cutoff can contribute
t0 weg(z) < —1. Let us consider Eq. (21), p, = [3¢*/(8zG)| (H* + k/a?).
One can see that sign of k could enhance or reduce rate of change
the holographic vacuum density. Since in our consideration, p, is not
constant and the continuity equation, p, + 3Hp,(1 + w,) = 0 (where

Py=wypy) canread wy =-1-p,/(BHp,) or

6H? (. k
y . = H-=).
Pa 87:G< a2> “47)
This gives
2 -k
wy=-1-———|H-— ). 48
4 3(H2+k/a2)< a2> (48)

In order to have w, < -1, if k > 0, the condition H > k/d° is
necessary. In case of k < 0, there are two subcases to consider, i.e. the
case, H> + k/a®> > 0 and the case H? + k/a*> < 0. In order to have
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Fig. 4. Numerical solution for the equation of state parameter w.q(z) and the Hubble
rate H(z) in case of flat and non-flat geometry for n =2, i.e. V = V> potential where
Vo = 1/2. The parameter ¢ is 0.9 and the NMDC coupling is x = —200. The spatial
curvature is set to k = 0,£2000.

w, < —1, for k < 0 with H? + k/a> > 0, the condition H > k/a* is
necessary. For k < 0 with H? + k/a> < 0, the condition H < k/a?
is necessary, that H is negative. It is obvious from Egs. (16) and (18)
that the NMDC terms (the term multiplied with x) can contribute to
phantom equation of state. Here, we can see that, not only the NMDC
terms with k < 0 that contribute to phantom equation of state, but free
spatial curvature, k terms (with large value of k) could contribute to
phantom equation of state as well. The mixed NMDC and holographic
effects to phantom equation of state is presented in Fig. 4 confronting
with H(z) data from [127].

6. Discussion and conclusion

We consider an FLRW universe with arbitrary curvature. The cosmic
matter contents are dust, NMDC scalar field driven by a power-law
potential and holographic vacuum energy. The holographic IR cutoff
length scale considered here is the apparent horizon which reduces
to Hubble length when the space is flat. The apparent horizon is a
plausible cutoff because in an accelerating universe, the horizon forms
a trapped null surface in the same spirit with blackhole’s event horizon.
For the flat case, one can write an effective gravitational constant
for Friedmann equation. However, as a generic case, the effective
gravitational constant cannot be expressed for the non-flat cases. This
is because there is a coupling between spatial curvature and NMDC
coupling term. Moreover, effective gravitational constant cannot be
expressed by factorization at the Lagrangian level. This is unlike the
case of non-minimal coupling (NMC) theory. Therefore the holographic
vacuum density is expressed using standard gravitational constant,
not the effective one as it is in the flat case. We perform dynamical
and stability analysis of this system and found that there are four
independent fixed points. One fixed point (the point (b)) is a stable
node corresponding to we; = —1 which exists for any value of the
NMDC coupling, x, however observation favors only the case x < 0.
The other fixed points are either unstable or saddle nodes. Cosmological
implications of all fixed points are considered in this work. One branch
of the stable fixed point (b) solution corresponds to de-Sitter expansion
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with a(r) = aoe\/m . We perform numerical integration of the dynamical
system and plot the result confronting H(z) data from [127]. It is seen
that for flat universe, H(z) observational data schematically agrees with
large negative value of «, i.e. k ~ —200 whereas greater value of ¢
lifts up slope of the H(z) plots. For positive x or small negative «,
the numerical results match the H(z) data only at low redshifts. Larger
magnitude of ¢ increases the slopes of both we and H(z) curves. Larger
value of the negative NMDC coupling, « and larger value of ¢ could
contribute to phantom equation of state, wqs < —1 in the near future,
i.e. at small negative redshifts. With inclusion of the spatial curvature,
there is NMDC-spatial curvature coupling term which can contribute to
sign of kinetic scalar energy according to the sign of k. Negative « is
favored since it contributes to larger value of scalar field kinetic term
in the Friedmann equation. That is to say, this NMDC-spatial curvature
coupling could affect the phantom energy contribution. Moreover, free
spatial curvature term, in holographic vacuum density cutoff and free
spatial curvature term in Eqgs. (16) and (18) can as well contribute to
phantom equation of state. This is significant only when magnitude
of k is large. We learn from this work that, in the non-flat case, the
gravitational constant cannot be considered as effective gravitational
constant and it does not appear at Lagrangian level. We also learn
that phantom effect could be contributed with large negative spatial
curvature, not only with the NMDC term or c¢. In non-holographic
limit, ¢ = 0 and flat case, our model with observational data favors
negative « for the late-time NMDC gravity in agreement with the
early-universe inflationary constraints of the NMDC gravity reported
by Tsujikawa [44]. Dynamics of our model in non-holographic limit
gives concordant results, i.e. fixed point solutions, to the work reported
by Sushkov and Galeev [125]. Regarding the current issue of Hubble
tension which debates discrepancy of the Hubble parameters analyzed
from CMB data (H, ~ 67km s7! Mpc‘l) and the late-local universe
observations (H, ~ 73km s~! Mpc~!) [128,129], the initial condition
given in our numerical integration is H, = 73km s~! Mpc™!' which is
of the late-local universe. Recent reports by [130-136] suggest that
combination of local expansion and the CMB data prefers phantom
equation of state. This could be possible if the initial condition of the
numerical integration is lowered towards H, ~ 67km s~! Mpc~! for
the case of k = —200 and high value of ¢, e.g. ¢ = 0.7 to 0.9 for both
flat case (k = 0) and open case (k < 0). Our work cannot significantly
address the solution to the Hubble tension. To test our model, more
data from, for example, OHD+Pantheon+Masers is needed with MCMC
analysis. Model selection is to be performed with AIC and BIC analysis.
At last, we notice that large negative « is super-Planckian. This could be
effectively possible if one considers negative x = x(¢) to scale with ¢=2,
that is the NMDC term is re-scaled with ¢~2 as in [137] motivated from
re-scaling invariant of the Horndeski Lagrangian [138]. For a power-
law potential, late-time small-field value enlarges the ¢~ factor such
that effectively large NMDC coupling is attained.
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