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This study explores the dynamics and phase-space behavior of a multicomponent dark
energy model, where the dark sector consists of a minimally coupled canonical scalar field
and the cosmological constant, using a dynamical system analysis setup for various types
of potentials for which a general parameterisation of the scalar field potentials has been
considered. Several fixed points with different cosmological behaviours have been identi-
fied. A detailed stability analysis has been done and possible late-time attractors have been
found. For this multi-component dark energy model, the late-time attractors are either fully
dominated by the cosmological constant or represent a scenario where a combination of the
scalar field and the cosmological constant dominates the universe. We have also shown that
for this type of model, the scalar field can show early dark energy (EDE) like behaviour.
However, our analysis indicates that this EDE like behaviour occurs naturally deep in the
matter-dominated era, not before the recombination era.

I. INTRODUCTION

Over two decades, various cosmological observa-
tions have confirmed the ongoing accelerated expan-
sion of the universe [1–5], yet the cause of it re-
mains unknown. In the standard model of cosmology,
we consider the accelerated expansion to be driven
by the cosmological constant [6], which is consis-
tent with current cosmological observations. How-
ever, it faces several challenges from both theoretical
and observational perspectives, despite its significant
achievements.

In addition to theoretical issues such as the cos-
mological constant problem and the fine-tuning prob-
lem, recent precision cosmological data have revealed
a significant statistical discrepancy in the estima-
tion of the Hubble parameter (H0) between early-
time and late-time observations. This discrepancy
presents an additional challenge to the cosmolog-
ical constant. Early universe measurements (e.g.,
CMB Planck [7], BAO [8, 9], BBN [10], DES [11–
13]) estimate H0 ≈ (67.0− 68.5) km/s/Mpc. In con-
trast, late-time measurements (e.g. SH0ES [14] and
H0LiCOW [15]) using time-delay cosmography find
H0 = (74.03±1.42) km/s/Mpc. This ≃ 5.3σ discrep-
ancy [16] hints towards new physics beyond ΛCDM
in the dark energy sector.

Various dynamical dark-energy models have been
suggested as alternatives for the cosmological con-
stant [17, 18]. For dynamical dark energy models
the equation of state of the dark energy changes over
time [19–27]. These models include but are not lim-
ited to quintessence, k-essence, and phantom-type
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scalar field models, where generally a scalar field is
coupled with the matter minimally or non-minimally
with a associated potential which can generate suf-
ficient negative pressure to drive the accelerated ex-
pansion of the universe. Recent observations from
DESI collaboration [28, 29] and other literatures [30–
33] have pointed towards the evidence for the dynam-
ical nature of the dark energy over the cosmological
constant.

Recent literature also shows evidence towards the
possibility of a multi-component nature of the dark
energy sector. These models are more preferable
compared to the cosmological constant when aligned
with current observations [27, 34–37]. In these types
of models, the dark sector is considered to consist of
cosmological constant together with other dark en-
ergy components like a scalar field[34] or a fluid[35],
or to be composed of multi-scalar fields[27]. In ad-
dition, these models can significantly reduce Hubble
tension compared to the ΛCDM model[27, 34].

In this paper, we have investigated a multicom-
ponent dark energy model where the dark sector
comprises a minimally coupled canonical scalar field,
known as a quintessence field, and a cosmological
constant. Our primary goal is to examine the phase
space behaviour and dynamics of this composite
model using the dynamical systems approach. By ap-
plying appropriate variable transformations, we con-
vert the system of equations into a set of autonomous
equations. Subsequently, these equations are recast
in polar form to facilitate mathematical handling.
We have considered a parameterization of the scalar
field potential that can encompass various forms of
potential to keep our analysis as general as possible,
as there is no consensus on the choice for the form of
the scalar field potential. A detailed stability analysis
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of the system is presented. Additionally, we explore
the dynamics of this model by numerically solving it,
revealing some naturally occurring Early Dark En-
ergy (EDE) like behaviours of the scalar field.

The manuscript is structured as follows. In Sec-
tion II, we cover the mathematical setup of the
model. Section III forms the autonomous system,
which is then transformed into polar form in Section
IV. Section V provides a detailed stability analysis of
the system. In Section VI, we explore the EDE like
behaviour of the scalar field with various potentials.
Finally, in Section VII, we summarise and conclude
our findings.

II. MATHEMATICAL BACKGROUND

In a spatially flat universe described by the stan-
dard FLRW metric which includes relativistic com-
ponents, matter components, a minimally coupled
canonical scalar field known as the quintessence field,
and the cosmological constant; the Friedmann equa-
tions can be expressed as follows:

H2 =
κ2

3
(ρm + ρr + ρϕ + ρΛ) , (1)

Ḣ = −κ2

2

∑
i

(pi + ρi) . (2)

Here, κ2 = 8πG, with H = ȧ/a denoting the Hub-
ble parameter and a(t) representing the scale factor.
The terms pϕ = 1

2 ϕ̇
2 + V (ϕ) and ρϕ = 1

2 ϕ̇
2 − V (ϕ)

correspond to the pressure and energy density of the
scalar field. The subscripts m, r, ϕ, and Λ refer to
matter, radiation, quintessence, and the cosmological
constant, respectively. The pressure pi and the en-
ergy density ρi for each species i, namelym, r, ϕ, and
Λ, are interrelated through the relation pi = wiρi,
where

wi =


1
3 , for relativistic matter

0, for non-relativistic matter

−1, for Λ.

The Klein-Gordon equation for the scalar field
and the continuity equations, respectively, can be ex-
pressed as follows:

ϕ̈+ 3Hϕ̇+
dV (ϕ)

dϕ
= 0, (3)

ρ̇i = −3H(pi + ρi), ∀ i = m, r, ϕ,Λ. (4)

The density parameter for a given species ‘i’ is

expressed as Ωi =
k2ρi
3H2 . Consequently, the Friedmann

constraint can be written as,

Ωm +Ωr +Ωϕ +ΩΛ = 1. (5)

III. THE DYNAMICAL SYSTEM

To understand the phase-space behavior of the
system, one needs to introduce a new set of dimen-
sionless variables to write it as an autonomous sys-
tem. Here we consider the following set of dimen-
sionless transformations:

x2 =
κ2ϕ̇2

6H2
, y2 =

κ2V (ϕ)

3H2
, (6)

λ = − 1

kV

dV (ϕ)

dϕ
,Γ =

V d2V
dϕ2(

dV
dϕ

)2 .

With the help of the above transformations, the
system can be reduced to a set of autonomous equa-
tions;

x′ = −3x+

√
3

2
λy2 +

1

2
x
(
6x2 + 3Ωm + 4Ωr

)
,

(7a)

y′ = −
√

3

2
λxy +

1

2
y
(
6x2 + 3Ωm + 4Ωr

)
, (7b)

Ω′
m = Ωm

(
−3 + 6x2 + 3Ωm + 4Ωr

)
, (7c)

Ω′
r = Ωr

(
−4 + 6x2 + 3Ωm + 4Ωr

)
, (7d)

λ′ = −
√
6x(Γ− 1)λ2 = −

√
6xf. (7e)

Here, the derivatives are with respect to N =

ln
(

a
a0

)
and f = (Γ − 1)λ2, where a0 is the present

value of the scale factor. In such a scenario, the total
Equation of State (EoS) can be written as

ωtot ≡
ptot
ρtot

= −1 + 2x2 +Ωm +
4

3
Ωr. (8)

The system of equations given in Eq.(7) cannot
be a closed system due to the arbitrariness of the
form of the scalar field potential V (ϕ). To close the
system, one needs to find f as a function of variables
x, y, λ. Since by definition f contains the derivative
of the potential, the form of it will depend only on
the choice of the potential.

Thus, for a particular choice of potential, there
will be a corresponding form of f . It is also possible
to consider a particular form of the f and find
the corresponding potential using the definition of
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the y, λ and Γ variable given in Eq.(6). In this
work, we consider f = α0 + α1λ + α2λ

2, where
the parameters α0, α1 and α2 can take any real
value. This particular parametrisation of f was first
proposed in [38]. Different choices of the α0, α1 and
α2 parameters will correspond to different classes of
potentials. In Table-I, we list eight distinct classes
of potentials, each corresponding to different choices
of the α parameters. The classification was made
based on whether certain α parameters are zero or
not. This approach has been taken to facilitate our
analysis for a wide class of potentials in a single
setup. A similar approach but for a different choice
of dynamical variables has also been used in [39].

IV. REPRESENTATION OF THE
DYNAMICAL SYSTEM IN POLAR FORM

The use of polar coordinates to study the cosmo-
logical system is often useful, as shown in [38–40]
because the new variables are directly related to the
cosmological parameters and the mathematical han-
dling of the system becomes easier. To transform
the system of equations Eq.(7) into polar form, we
use the transformation x = r cos θ and y = r sin θ,
where r2 = x2 + y2 = Ωϕ. With the above choice,
the system of equations reduces to

r′ =
r

2

(
−3− 3 cos(2θ) + 6r2 cos2 θ + 3Ωm + 4Ωr

)
,

(9a)

θ′ =
1

2
sin θ

(
6 cos θ −

√
6λr

)
, (9b)

Ω′
m = Ωm

(
−3 + 6r2 cos2 θ + 3Ωm + 4Ωr

)
, (9c)

Ω′
r = Ωr

(
−4 + 6r2 cos2 θ + 3Ωm + 4Ωr

)
, (9d)

λ′ = −
√
6r cos θ

(
α0 + α1λ+ α2λ

2
)
. (9e)

In addition, the Friedmann constraint given in
Eq.(5) takes the following form

r2 +Ωm +Ωr +ΩΛ = 1. (10)

The total equation of state and the equation of
state of the scalar field can be represented in the
polar form as follows,

ωtot = −1 + 2r2cos2θ +Ωm +
4

3
Ωr, (11)

ωϕ ≡
pϕ
ρϕ

= cos2θ. (12)

V. STABILITY ANALYSIS

The equilibrium points of the system of equations
given in Eq.(9) are listed in Table-II, while the eigen-
values corresponding to these points are presented in
Table-III. The equilibrium points are calculated by
solving the simultaneous system of equations: r

′
= 0,

θ
′
= 0, Ω

′
m = 0, Ω

′
r = 0, and λ

′
= 0. The existence of

equilibrium points for the corresponding potentials is
also given in the last column of the Table-II. The
values for the cosmological parameters, such as the
deceleration parameter, the equation of state (EoS)
of the scalar field, and the total EoS for each fixed
point, are provided in Table-IV.

In this context, the subscript ‘c’ is used to denote
the equilibrium points (rc, θc, Ωmc, Ωrc, λc). Subse-
quently, we analyze the stability of these equilibrium
points by categorizing them according to the different
epochs of the universe they represent.

A. Radiation Dominated Era

The equilibrium points indicating the radiation
domination era are characterised by Ωrc = 1 and rep-
resented by ‘r’ which are of the nonisolated type and
given in Table-II. For all the equilibrium points of
this era, the corresponding Jacobian matrix has two
different sets of eigenvalues depending on whether
θc = nπ or θc = nπ± π

2 . Those eigenvalues are listed
in Table-III. In both cases, the Jacobian matrix
has both positive and negative eigenvalues. So, these
equilibrium points are saddle-like in nature. These
equilibrium points exist for all potentials (V1 − V8)
listed in Table-I. From Table-IV it can be seen as
expected that at these equilibrium points the uni-
verse is decelerating, and wtot = 1/3.

B. Matter Dominated Era

The equilibrium points indicating the matter
dominated era are defined by Ωmc = 1, are denoted
by ‘m’ and given in the Table-II. The Jacobian
matrix, corresponding to any equilibrium point dur-
ing this era, exhibits two distinct sets of eigenval-
ues depending on whether θc = nπ or θc = nπ ± π

2 .
These eigenvalues are detailed in Table-III. For each
n ∈ Z, the equilibrium points during this period are
categorized as saddle points due to the presence of
both positive and negative eigenvalues corresponding
to these fixed points. The equilibrium points for the
matter domination era are present for all potentials
V1−V8. One can see from Table-IV that these points
represent a decelerating universe with wtot = 0.
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Label Structure of f Potential V (ϕ)

V1 α0 ̸= 0, α1 ̸= 0, α2 ̸= 0 Aexp

[
α1kϕ−2 log

(
cosh

(
1
2

√
α2

1−4α0α2k(ϕ+B)
))

2α2

]
V2 α0 = 0, α1 ̸= 0, α2 ̸= 0 A

(
eα1kϕ

) 1
α2

(
α1α2k

(
eα1kϕ + α2e

α1Ak
))− 1

α2

V3 α0 ̸= 0, α1 = 0, α2 ̸= 0 A cos−
1

α2

(√
α0α2k(ϕ+B)

)
V4 α0 ̸= 0, α1 ̸= 0, α2 = 0 Aexp

[
α0k

2ϕ−c1e
−kα1ϕ

α1k

]
V5 α0 ̸= 0, α1 = 0, α2 = 0 Aexp

[
1
2α0k

2ϕ2 +Bϕ
]

V6 α0 = 0, α1 ̸= 0, α2 = 0 Aexp
[
−Be−kα1ϕ

α1k

]
V7 α0 = 0, α1 = 0, α2 ̸= 0 A (α2ϕ+B)−

1
α2

V8 α0 = 0, α1 = 0, α2 = 0 AeBϕ

TABLE I: A list of various classes of potentials based on the different choices for the α parameters. Here
A and B are integration constants.

C. Scalar field dominated era

For the equilibrium points in the scalar field dom-
ination era, we have rc = 1. In this case, the equilib-
rium points are given by e1 - e4± in Table-II. The
eigenvalues of the Jacobian matrix at e1 depend on
α1. But, for the existence of positive eigenvalues of
the Jacobian matrix at e1, the equilibrium points
given by e1 are unstable and exist for the potentials
V2 and V6 − V8. These equilibrium points represent
a decelerating universe with wtot = 1.

The equilibrium points indicated by e2 are of non-
hyperbolic nature, characterised by a zero eigenvalue.
These fixed points may be stable within the parame-
ter range 0 < α0 ≤ 3

4 , as the remaining two eigenval-
ues can be negative. Due to their non-hyperbolic na-
ture, linear stability analysis cannot determine their
stability. Instead, stability must be assessed using
centre manifold theory or by numerically plotting
the system’s phase around the fixed point. Given
that the system’s dimension exceeds three, a com-
plete phase plot is impractical; hence, phase portraits
are drawn on various projected planes. If all pro-
jected phase planes depict the equilibrium point as
stable, it is stable in the full space. Conversely, if any
projected phase space shows instability, the equilib-
rium point is unstable in the entire space. For the
equilibrium point e2, we draw a phase plot (Fig.1)
in the (r,Ωm) plane. This phase plot indicates that
the equilibrium points specified by e2 are unstable on
the (r,Ωm) plane and consequently in the full space.
Those equilibrium points represent an accelerating
universe with wϕ = wtot = −1.

The equilibrium points, labelled e3 and e4±, are
identified for rc = 1, Ωmc = 0, Ωrc = 0, and λc = A±
(refer to Appendix: A for the complete form of A±).
These fixed points exist for the potentials V1 − V3

and V7. However, the values of θc are not the same
for these points. These equilibrium points exist when

-2 -1 0 1 2

-2

-1

0

1

2

r

Ω
m

(1,0)

FIG. 1: Phase plot for the system of equations
Eq.(9) in (r − Ωm) plane for the fixed point e2.

α2 ̸= 0 and α2
1−4α0α2 ≥ 0. The eigenvalues of e3 are

determined by whether n is even or odd, while the
eigenvalues of e4± are independent of n. In all cases,
the Jacobian matrix evaluated at e3 and e4± exhibits
positive eigenvalues. Consequently, the fixed points
represented by e3 and e4± are unstable regardless of
the values of n and the parameters α0, α1, and α2.
These fixed points represent a decelerating universe
with wϕ = wtot = 1.

D. Λ - Dominated Era

The equilibrium points representing the cosmo-
logical constant or Λ-domination era are represented
by rc = 0, Ωmc = 0, and Ωrc = 0. These fixed points
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Equilibrium
points

rc θc Ωmc Ωrc λc Potentials

r 0 nπ
2 0 1 λ V1 − V8

m 0 nπ
2 1 0 λ V1 − V8

e1 1 nπ 0 0 0 V2, V6 − V8

e2 1 nπ ± π
2 0 0 0 V1 − V8

e3 1 nπ 0 0 A± V1 − V3, V7

e4± 1 nπ ± cos−1
(

A±√
6

)
0 0 A± V1 − V3, V7

c 0 nπ
2 0 0 λ V1 − V8

er1± 2E± 2nπ ± cos−1
(√

2
3

)
0 B± A∓ V1, V3

er2± −2E± (2n+ 1)π ± cos−1
(
−
√

2
3

)
0 B± A∓ V1, V3

er3± 2E± 2nπ ± cos−1
(√

2
3

)
0 1− 4E2

±
1

E±
V1, V3

er4± −2E± (2n+ 1)π ± cos−1
(
−
√

2
3

)
0 1− 4E2

±
1

E±
V1, V3

er5± ± 2α2

α1

(
nπ ± cos−1

(
±
√

2
3

))
0 1− 4α2

2

α2
1

−α1

α2
V2

er6± ± 2α1

α0

(
nπ ± cos−1

(
±
√

2
3

))
0 1− 4α2

1

α2
0

−α0

α1
V4

em1±
√
3E± 2nπ ± π

4 C± 0 A∓ V1, V3

em2± −
√
3E± 2nπ ± 3π

4 C± 0 A∓ V1, V3

em3± ±
√
3E± nπ ± π

4 1− 3E2
± 0 1

E±
V1, V3

em4
√
3α2

α1
2nπ ± π

4 1− 3α2
2

α2
1

0 −α1

α2
V2

em5 −
√
3α2

α1
2nπ ± 3π

4 1− 3α2
2

α2
1

0 −α1

α2
V2

em6
√
3α1

α0
2nπ ± π

4 1− 3α2
1

α2
0

0 −α0

α1
V4

em7 −
√
3α1

α0
2nπ ± 3π

4 1− 3α2
1

α2
0

0 −α0

α1
V4

ec1 r nπ ± π
2 0 0 0 V1 − V8

ec2± ± 1√
2
E±D∓ nπ,

2nπ ± cos−1
(

D∓
2
√
3

) 0 0 A∓ V1, V3

TABLE II: The list of equilibrium points for the system of equations given in Eq.(9). The complete
expressions of A±, B±, C±, D±E± are given in Appendix-A. The last column of the table shows the classes

of potentials for which the fixed points exist.
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Equilibrium points eigenvalues
r 4, 3,−1, 1, 0 for θ = nπ;

4,−3, 2, 1, 0 for θ = nπ ± π
2

m 3, 3,− 3
2 ,−1, 0 for θ = nπ;

−3, 3, 3
2 ,−1, 0 for θ = nπ ± π

2

e1 6, 3, 3, 2,−
√
6α1, for even n;

6, 3, 3, 2,+
√
6α1, for odd n

e2 −4,−3, 0, 1
2

(
−3 +

√
9− 12α0

)
, 1
2

(
−3−

√
9− 12α0

)
e3 2, 3, 6,∓

√
6
√

α2
1 − 4α0α2, 3−

√
3
2A±, for even n;

2, 3, 6,±
√
6
√

α2
1 − 4α0α2, 3 +

√
3
2A±, for odd n

e4± 2, 3, 6,∓
√
6
√

α2
1 − 4α0α2, 3−

√
3
2A±

c −4,−3,−3, 3, 0 for θ = nπ;
−4,−3,−3, 0, 0 for θ = nπ ± π

2

er1±, er2± 1, 4,−8α2 − 4α1E±,
1
2

(
−1± 1

α0

√
− (15α2

0 + 64α0α2 + 64α1α2A±)
)
,

er3±, er4± -

er5± 1, 4,−4α2,
1
2 ±

(
1

6α1

)√
3(3− 8

√
6)α2

1 + 96
√
6α2

2

er6± 1, 4,
4α2

1

α0
, 1
2 ±

(
1

6α0

)√
3(3− 8

√
6)α2

0 + 96
√
6α2

1

em1±, em2± −1, 3,−6α2 − 3α1E±,
3
4

(
−1± 1

α0

√
− (7α2

0 + 24α0α2 + 24α1α2A±)
)
,

em3± -

em4, em5 −1, 3, −3α2,
3
4

(
−1±

(
3

4α1

)√
24α2

2 − 7α2
1

)
em6, em7 −1, 3,

3α2
1

α0
, 3

4

(
−1±

(
3

4α0

)√
24α2

1 − 7α2
0

)
ec1 −4,−3, 0, 1

2

(
−3±

√
9− 12α0r2c

)
ec2± 2, 3, 6, 3∓

√
3
2

√
− 2α0

α2
− 2α1

α2
A∓,

±
√
3α2

α0
A±

√
α2
1 − 4α0α2

√
− 2α0

α2
− 2α1

α2
A∓, for even n and sinθ = 0;

2, 3, 6, 3±
√
3
2

√
− 2α0

α2
− 2α1

α2
A∓,

∓
√
3α2

α0
A±

√
α2
1 − 4α0α2

√
− 2α0

α2
− 2α1

α2
A∓, for odd n and sinθ = 0;

2α0 + α1A∓,−α0

α2
−

(
α1

α2

)
A∓,− 1

α2
(α0 + 3α2)−

(
α1

α2

)
A∓,

− 1
α2

(α0 + 4α2)−
(

α1

α2

)
A∓,− 1

2α2
(α0 + 6α2)−

(
α1

2α2

)
A∓, for cosθ = D∓

2
√
3

TABLE III: The list of eigenvalues of the equilibrium points given in Table-II. For the fixed points
er3±, er4±, em3± the analytical forms of the eigenvalues are complicated and hence not included in the
table. These eigenvalues can be computed for some particular choices of α parameters, see the text for

more details.

exist for all potentials listed in Table-I. In this case,
the equilibrium points are given by ‘c’ in the Table-
II and they are nonisolated equilibrium points. The
eigenvalues of the Jacobian matrix evaluated at ‘c’
depend on θc. For θc = nπ the Jacobian matrix has
a mixture of positive and negative eigenvalues, hence
the fixed points in this case are saddle. On the other
hand, finding the stability of the equilibrium points
‘c’ for θc = nπ ± π

2 is more involved since it has two

zero eigenvalues and other all negative eigenvalues.
Three negative eigenvalues correspond to a 3D sta-
ble manifold, whereas the two zero eigenvalues cor-
respond to a 2D center manifold. In general, one can
use the center manifold theorem to investigate the
stability of this fixed point, rather here we draw the
phase plots on 3D planes. All the points in red color
and the points on the lines shown in red in the pro-
jected phase spaces, as depicted in Fig. 2, represent
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Equilibrium points q ωϕ ωtot

r 1 1 for θ = nπ;
−1 for θ = nπ ± π

2

1
3

m 1
2 1 for θ = nπ;

−1 for θ = nπ ± π
2

0

e1,e3, e4± 2 1 1
e2 −1 −1 −1
c −1 1 for θ = nπ;

−1 for θ = nπ ± π
2

−1

er1±, er2±,
er3±, er4±

α2
0+16α2α0+8

(√
α2

1−4α0α2−α1

)
α1

α2
0

,

for er+
α2

0+16α2α0−8α1

(√
α2

1−4α0α2+α1

)
α2

0
,

for er−

1
3

1
3

er5±, er6± 1− 16α2
1

α2
0
, for er5±;

1− 16α2
2

α2
1
, for er6±

1
3

1
3

em1±,
em2±, em3±

α2
0+18α2α0+9

(√
α2

1−4α0α2−α1

)
α1

2α2
0

,

for em+

α2
0+18α2α0−9α1

(√
α2

1−4α0α2+α1

)
2α2

0
,

for em−

1
3

1
3

em4, em5 1
2 − 9α2

2

α2
1

0 0

em6, em7 1
2 − 9α2

1

α2
0

0 0

ec1 −1 −1 −1
ec2± −4, for θ = nπ;

2(α0−2α2)α2−α1

(√
α2

1−4α0α2+α1

)
4α2

2
,

for rc = ± 1√
2
E+D−(√

α2
1−4α0α2−α1

)
α1+2α2(α0−2α2)

4α2
2

,

for rc = ± 1√
2
E−D+

1, for θ = nπ;
α1

(√
α2

1−4α0α2+α1

)
−2α2(α0+3α2)

6α2
2

,

for rc = ± 1√
2
E+D−

α2
1−

√
α2

1−4α0α2α1−2α2(α0+3α2)

6α2
2

,

for rc = ± 1√
2
E−D+

1, for θ = nπ;
α1

(√
α2

1−4α0α2+α1

)
−2α2(α0+3α2)

6α2
2

,

for rc = ± 1√
2
E+D−

α2
1−

√
α2

1−4α0α2α1−2α2(α0+3α2)

6α2
2

,

for rc = ± 1√
2
E−D+

TABLE IV: The values of cosmological parameters for the equilibrium points given in Table-II.

the equilibrium point ‘c’ for the V2 potential. From
this figure, we can see that the fixed points given by
‘c’ are stable for θ = nπ ± π

2 in all projected sub-
spaces and hence stable in the entire 5D space. We
have also checked that for the other class of poten-
tials, the behaviour of the fixed point remains the
same. These fixed points represent an accelerating
universe with wϕ = 1 and wtot = −1 for θ = nπ
whereas wϕ = wtot = −1 for θ = nπ ± π

2 . Interest-
ingly, in the first case, the scalar field behaves as a
stiff fluid.

E. The Era Shared by Scalar Field and other
components

In our setup, there are some specific fixed points
that indicate scenarios where the energy budget is
shared between the scalar field and other compo-
nents.

The Era Shared by the Scalar Field and Radiation

The fixed points er1± to er6± represent the state
where the universe’s energy budget is shared by radi-
ation and the scalar field by the relation r2c+Ωrc = 1.
These equilibrium points are detailed in the Table-
II. For each n ∈ Z, the equilibrium points er1±,
er2±, er5±, and er6± exhibit positive eigenvalues,
making these points unstable or saddle depending
on the choice of parameters α0, α1, α2. The eigen-
values of the Jacobian matrix at er3± and er4±
are complicated in general, making it difficult to
draw any conclusions about their stability. For these
points, we evaluate the stability at specific values of
α parameters. We have considered the same value
of the α parameters that have been used to plot
Fig.4 and Fig.6, for potentials V1 and V3 respec-
tively. For the potential V1 the eigenvalues at er3±
are 1, 4,−2.8394, and −0.5± 1.93041i, while at er4±
they are −201.793,−11.2262, 10.2262, 4, and 1, in-
dicating that these points are saddle points. For
potential V3, the eigenvalues at er3± and er4± are
1, 4,−4.48, and −0.5 ± 1.92544i, showing that they
are saddle points. The fixed points er1± and er2±
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FIG. 2: Phase plots in different 3D projected spaces for the equilibrium point ‘c’ and for the potential V2.

exist for the potentials V1 and V3; er5± exist for the
potential V2; and er6± for potential V4. For all pos-
sible equilibrium points in this era wϕ = wtot = 1/3
representing a decelerated universe.

The Era Shared by the Scalar Field and Matter

For the equilibrium points in the era shared by
scalar field and matter, we have r2c + Ωmc = 1. In
this case, the equilibrium points are given by em1±
- em7 and are given in Table-II. For each n ∈ Z,
though the eigenvalues of the Jacobian matrix eval-
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FIG. 3: Plots of the numerical solutions for each
dynamical variable by considering perturbations

around the equilibrium point ec1. The plots in the
left column are shown for potential V1 and on the

right it is shown for the potential V8.

uated at the equilibrium points em1±, em2± and
em4 − em7 depend on the parameters α0, α1 and
α2; but it has a positive eigenvalue irrespective of αi.
So, the equilibrium points given in this era are unsta-
ble in nature. The equilibrium points em1± − em3±
exist for the potentials V1, V3; em4 and em5 ex-
ist for the potential V2; em6 and em7 exist for the
potential V4. The eigenvalues of the Jacobian ma-
trix evaluated at the equilibrium points em3± are
very complicated. So, for em3±, we evaluate the
stability similarly as the case for er3± and er4±.
For the potential V1 the eigenvalues at em3+ are
3,−1,−2.12955, and −0.75±1.97931i, while at er3−
they are 9.06334, 3,−1,−10.5633, and −151.345, in-

dicating that these points are saddle points. For po-
tential V3, the eigenvalues at em3± are 3,−1,−3.36,
and −0.75 ± 1.97522i, showing that they are saddle
points. The exact value of the deceleration param-
eter depends on α parameters for all the potentials
belonging to this era. However, for all possible equi-
librium points in this era wϕ = wtot = 0 representing
a decelerated universe.

The Era Shared by the Scalar Field and Λ

For the equilibrium points in the era shared by
scalar field and Λ, we have r2c +ΩΛc = Ωϕc+ΩΛc = 1.
In this case, the equilibrium points are given by ec1
and ec2±. The equilibrium points given by ec1 exist
for all potentials V1 − V8. Those equilibrium points
are given in the Table-II. The nature of the equi-
librium points given by ec1 depends on the param-
eter α0. If 0 < α0 < 3

4r2c
, then the equilibrium

points given by ec1 are normally hyperbolic equilib-
rium points and the Jacobian matrix has four eigen-
values with negative real part and one zero eigenval-
ues. Again, if α0 = 0 then the equilibrium points
given by ec1 are of non-hyperbolic type and the Ja-
cobian matrix has three negative and two zero eigen-
values. To check the stability of those equilibrium
points we plot the evolution of the dynamical vari-
ables r, θ,Ωm,Ωr and λ by solving the system numer-
ically where the system has been perturbed from the
equilibrium point ec1. This approach for finding the
stability of the non-hyperbolic fixed points has been
previously used in [41–43]. In Fig.3 for example we
have plotted the evolution of the system with N for
the potentials V1 (on the left column) and V8 (on the
right column) subjected to perturbations around the
fixed point ec1. We can see that the evolution of the
dynamical variables does not diverge but rather stays
in the neighbourhood of the fixed point, indicating its
stable nature. We have also checked that the quali-
tative behaviour of the fixed point remains the same
even for the other potentials. Thus, the fixed points
given by ec1 are stable for α0 = 0. Again, if α0 < 0,
then the equilibrium points given by ec1 are non-
hyperbolic type and the Jacobian matrix has a pos-
itive eigenvalue. Thus, the equilibrium points given
by ec1 are stable for 0 ≤ α0 ≤ 3

4r2c
, where 0 ≤ rc ≤ 1

and unstable for α0 < 0. These fixed points represent
an accelerating universe with wϕ = wtot = −1.

The equilibrium points ec2± are defined by rc =
± 1√

2
E±D∓, Ωmc = 0, Ωrc = 0, and λc = A∓

and exists for potentials V1 and V3. There are two
distinct types of θc at these points: θc = nπ and
θc = 2nπ ± cos−1 D∓

2
√
3
. For θc = nπ, the eigenvalues

of the Jacobian matrix vary depending on whether
n is even or odd, but some eigenvalues are always
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positive, hence the fixed points are unstable. For
θc = 2nπ ± cos−1 D∓

2
√
3
, the form of the eigenvalues is

complicated and it is not possible to conclude sta-
bility analytically for this fixed point for any general
choice of the parameters α. Thus, stability was as-
sessed for specific values of the parameters α0, α1,
and α2 that are considered for the numerical solu-
tions shown in Fig.1 and Fig.3. The Jacobian matrix
has at least one positive eigenvalue for our choices
of the α parameters, making ec2± unstable. These
points also correspond to an accelerating universe.

VI. EDE LIKE BEHAVIOR OF THE SCALAR
FIELD

In our analysis of the phase space for the current
model, which includes a nonminimally coupled scalar
field and the cosmological constant as potential can-
didates for dark energy, we observed that there is
no late-time attractor completely dominated by the
scalar field. The only possible late-time attractors
are either completely dominated by the cosmologi-
cal constant or a scenario where there is only the
cosmological constant and scalar field present in the
universe, the rest of the components are absent. Al-
though there are epochs where the scalar field and
other components coexist, these correspond to the
fixed points, which are saddle or unstable.

In the following, we aim to explore the possibil-
ity of the scalar field contributing to the universe’s
energy budget prior to the onset of the dark energy
dominated epoch. This is motivated by the presence
of fixed points in the system that corresponds to the
eras that might be potentially shared between other
components and the scalar field, suggesting an early
dark energy (EDE) like behaviour of the scalar field.

The EDE models predict that the dark energy
makes up approximately 10% of the universe’s en-
ergy budget just before or during the recombination
era. Identifying early dark-energy-like solutions is
quite challenging, as the solutions are highly sensi-
tive to the initial conditions. In this study, we nu-
merically solve the system of equations Eq.(9) by con-
sidering the specific initial conditions given in Table-
V I. In particular, except for the initial condition
of λ for all potentials, the initial conditions for the
other variables remain almost the same. The initial
condition is set before the radiation-matter equality
at N = −10.1, corresponding to z ≈ 22026, deep in
the radiation-dominated era. The range of α param-
eters and λini for each class of potential is presented
in Table-I, for which the qualitative behaviour of our
analysis remains the same.

The evolution of the density parameters for vari-
ous components of the universe corresponding to all

the classes of potentials are shown in Fig.4 to Fig.11
respectively. For the classes of potentials, V1 - V6

we can see the EDE like behaviour of the scalar
field appears naturally in the deep-matter dominated
era, which is almost 10% of the total energy bud-
get of the universe. But, at present the contribu-
tion of the scalar field is negligible. Whereas for the
classes of potentials, V7 and V8 also the similar be-
haviour of the scalar field appears naturally in the
deep matter-dominated era, which is almost 10% of
the total energy budget of the universe. Contrary to
the previous case for these two classes of potentials
at present as well as near future the scalar field has a
non-negligible contribution to the total energy bud-
get of the universe. The redshift parameter values
for matter-radiation equality and the occurrence of
EDE-like behavior of the scalar field are provided in
Table-V I for the numerical solutions obtained for all
classes of potentials.

We have also plotted the evolution of different cos-
mological parameters like the deceleration parameter
in Fig.12, the equation of state of the scalar field in
Fig.13 and the total equation of state in Fig.14 for all
potentials. Those plots are drawn for the same val-
ues of the parameters α for which Fig.4 to Fig.11 are
drawn. For the evolution of the deceleration param-
eter, one can see that its value has become negative
in the recent past from positive, showing the acceler-
ating expansion of the universe. It can be seen that
the transition of the universe from the decelerated to
accelerated phase remains smooth throughout except
for the epoch where the scalar field shows EDE like
behaviour. During this epoch, the deceleration pa-
rameter shows some increments suggesting more de-
celeration of the universe due to the activation of the
scalar field. Later, it started to decrease and become
negative with time. From the plot of the EOS of the
scalar field in Fig.13 one can see that in the very early
universe, the scalar field behaves like a stiff fluid with
EOS wϕ = 1 then it becomes wϕ = −1. During the
EDE like behaviour of the scalar field, it increases
and becomes positive and the scalar field does not
contribute to the acceleration of the universe since
wϕ > −1/3 rather it was slowing down the expan-
sion of the universe. This can also be seen from the
plot of the wtot in Fig.14 since during this epoch the
wtot becomes positive and starts to decrease again.

In Fig.15 we have shown the evolution of the H(z)
vs z for all the classes of potentials we have con-
sidered here. It can be seen that these potentials
fit the data quite well, at least during the late time
evolution. We acknowledge that a comprehensive pa-
rameter estimation using current cosmological data is
necessary to constrain the parameters and comment
more accurately on this EDE like behaviour of the
scalar field, which is beyond the scope of the current
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work. This will be addressed in future research.

VII. CONCLUSION

In this study, we explore the dynamics and phase-
space characteristics of a multicomponent dark en-
ergy model. This model features a dark sector that
includes a minimally coupled canonical scalar field
and a cosmological constant. The equations are
transformed into autonomous systems and subse-
quently into a polar form. We have considered a
parameterization for the potentials of the scalar field
that helps us to study a broad spectrum of potentials
in a single setup.

By using dynamical system analysis, we find sev-
eral fixed points that correspond to various cosmo-
logical eras together with possible late-time attrac-
tors. In this model, the late-time attractors are either
completely dominated by the cosmological constant
or present a scenario where both the scalar field and
the cosmological constant coexist, excluding all other
components.

We also investigated numerically the possibility
of EDE like behaviour for all the different classes
of potentials considered in this work and observed
that this EDE like behaviour of the scalar field oc-
curs deep within the matter-dominated era, not near
the recombination period. We also found that during
this EDE like era of the scalar field, it behaves more
like matter rather than dark energy. During this era,
the universe becomes more decelerated compared to
the standard case. The total EOS of the universe
also shows a transition from negative to positive val-
ues during this epoch. A detailed examination of this
EDE like behaviour of the scalar field will require a
comprehensive cosmological data analysis with the
recent data, which we will present in the future.
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FIG. 4: Plot of the density parameters for different
components of universe for the potential V1.
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FIG. 5: Plot of the density parameters for different
components of universe for the potential V2.
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FIG. 6: Plot of the density parameters for different
components of universe for the potential V3.
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Potentials Nini rini θini Ωmini
Ωrini

λini

V1 −10.1
√
0.3× 10−9 tan−1(−2) 0.118− (rini)

2

2 0.882− (rini)
2

2 −2.4

V2 −10.1
√
0.3× 10−9 tan−1(−2) 0.118− (rini)

2

2 0.882− (rini)
2

2 −2.93

V3 −10.1
√
0.36× 10−9 tan−1(−2) 0.118− (rini)

2

2 0.882− (rini)
2

2 −0.64

V4 −10.1
√
0.3× 10−9 tan−1(−2) 0.118− (rini)

2

2 0.882− (rini)
2

2 −4.49

V5 −10.1
√
0.3× 10−9 tan−1(−2) 0.118− (rini)

2

2 0.882− (rini)
2

2 −5.13

V6 −10.1
√
0.3× 10−9 tan−1(−2) 0.118− (rini)

2

2 0.882− (rini)
2

2 −5.785

V7 −10.1
√
0.3× 10−9 tan−1(−2) 0.118− (rini)

2

2 0.882− (rini)
2

2 −6

V8 −10.1
√
0.3× 10−9 tan−1(−2) 0.118− (rini)

2

2 0.882− (rini)
2

2 −6.59

TABLE V: The initial values of the variables for which the numerical solution of the system of equations
Eq.(9) has been obtained.

Potentials λini α0 α1 α2 zeq z∗
V1 [−2.5,−2.4] [−20,−4.65] [18, 20] [0.4, 0.7] 3228 54
V2 [−3,−2.93] 0 [16, 20] [0.9, 1] 3228 52
V3 [−0.7,−0.5] [−270,−200] 0 [0.47, 0.8] 3228 58
V4 [−4.6,−4.49] [−8,−4.35] [2.8, 3] 0 3293 43
V5 [−5.3,−5.13] [−16.5,−12] 0 0 3228 44
V6 [−5.9,−5.785] 0 [0.9, 1.1] 0 3228 40
V7 [−6.1,−5.99] 0 0 [−0.15,−0.1] 3228 38
V8 [−6.9,−6.59] 0 0 0 3228 31

TABLE VI: The range of parameters and λini for which the qualitative behavior of the numerical solution
of the system of equations Eq. (9) remains unchanged.
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FIG. 8: Plot of the density parameters for different
components of universe for the potential V5.
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FIG. 9: Plot of the density parameters for different
components of universe for the potential V6.
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FIG. 10: Plot of the density parameters for different
components of universe for the potential V7.
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FIG. 11: Plot of the density parameters for different
components of universe for the potential V8.
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FIG. 12: Plots of the deceleration parameter for
early dark energy with respect to different classes of

potentials.
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FIG. 14: Plots of the total equation of state with
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Appendix A

A± =
−α1 ±

√
α2
1 − 4α0α2

2α2
.

E∓ =
−α1 ±

√
α2
1 − 4α0α2

2α0
,

B± = 1 +
4α2

α0
+

4α1

α0
E±,

C± = 1 +
3α2

α0
+

3α1

α0
E±,

D∓ =

√
− 2

α2
(α1A∓ + α0).

Appendix B: Observed data for the Hubble’s parameter vs. redshift & the e-folding.

z N = ln( 1
1+z ) H(z)

(
km/s
Mpc

)
Ref.

0.07 -0.067 69± 19.6 [44]
0.09 -0.086 69± 12 [45]
0.100 -0.095 69± 12 [45]
0.120 -0.113 68.6± 26.2 [44]
0.170 -0.157 83± 8 [45]
0.179 -0.164 75± 4 [46]
0.199 -0.181 75± 5 [46]
0.200 -0.182 72.9± 29.6 [44]
0.270 -0.239 77± 14 [45]
0.280 -0.246 88.8± 36.6 [44]
0.320 -0.277 79.2± 5.6 [47]
0.352 -0.301 83± 14 [46]
0.3802 -0.322 83± 13.5 [46]
0.400 -0.336 95± 17 [45]
0.4004 -0.336 77± 10.2 [46]
0.4247 -0.353 87.1± 11.2 [46]
0.440 -0.364 82.6± 7.8 [48]
0.4497 -0.371 92.8± 12.9 [46]
0.470 -0.385 89± 34 [49]

z N = ln( 1
1+z ) H(z)

(
km/s
Mpc

)
Ref.

0.4783 -0.390 80.9± 9 [46]
0.480 -0.392 97± 62 [50]
0.570 -0.451 100.3± 3.7 [47]
0.593 -0.465 104± 13 [46]
0.600 -0.470 87.9± 6.1 [48]
0.680 -0.518 92± 8 [46]
0.730 -0.548 97.3± 7 [48]
0.781 -0.577 105± 12 [46]
0.875 -0.628 125± 17 [46]
0.880 -0.631 90± 40 [50]
0.900 -0.641 117± 23 [45]
1.037 -0.711 154± 20 [46]
1.300 -0.832 168± 17 [45]
1.363 -0.859 160± 33.6 [51]
1.430 -0.887 177± 18 [45]
1.530 -0.928 140± 14 [45]
1.750 -1.011 202± 40 [45]
1.965 -1.086 186.5± 50.4 [51]
2.340 -1.205 222± 7 [52]
2.360 -1.211 226± 8 [53]

TABLE VII: Observed data for H(z) as a function of z alongside the associated value of N , with
references that have been used in this study.
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