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Abstract
This study explores the dynamics and phase-space behavior of a multi-component
dark energy model, where the dark sector consists of a minimally coupled canon-
ical scalar field and the cosmological constant, using a dynamical system analysis
setup for various types of potential for which a general parameterization of the scalar
field potentials has been considered. Several fixed points with different cosmologi-
cal behaviors have been identified. A detailed stability analysis has been done and
possible late-time attractors have been found. For this multi-component dark energy
model, the late-time attractors are either fully dominated by the cosmological constant
or represent a scenario where a combination of the scalar field and the cosmological
constant dominates the universe. In this type of model, there is a possibility that the
scalar field can become dynamical quite early compared to the standard era of dark
energy domination. However, our analysis indicates that this early time contribution of
the scalar field occurs deep in the matter-dominated era, not before the recombination
era.

Keywords Dark energy · Quintessence · Early dark energy · Dynamical system
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1 Introduction

Over two decades, various cosmological observations have confirmed the ongoing
accelerated expansion of the universe [1–5], yet the cause of it remains unknown. In
the standard model of cosmology, we consider the accelerated expansion to be driven
by the cosmological constant [6], which is consistent with current cosmological obser-
vations. However, it faces several challenges from both theoretical and observational
perspectives, despite its significant achievements.

In addition to theoretical issues such as the cosmological constant problem and the
fine-tuning problem, recent precision cosmological data have revealed a significant
statistical discrepancy in the estimation of the Hubble parameter (H0) between early-
time and late-time observations. This discrepancy presents an additional challenge
to the cosmological constant. Early universe measurements (e.g., CMB Planck [7],
BAO [8, 9], BBN [10], DES [11–13]) estimate H0 ≈ (67.0 − 68.5) km/s/Mpc. In
contrast, late-time measurements (e.g. SH0ES [14] and H0LiCOW [15]) using time-
delay cosmography find H0 = (74.03 ± 1.42) km/s/Mpc. This � 5.3σ discrepancy
[16] hints towards new physics beyond �CDM in the dark energy sector.

Various dynamical dark-energy models have been suggested as alternatives for the
cosmological constant [17, 18]. In dynamical dark energy models the equation of
state of the dark energy changes over time [19–27]. These models include but are
not limited to quintessence, k-essence, and phantom-type scalar field models, where
generally a scalar field is coupled with the matter minimally or non-minimally with a
associated potential which can generate sufficient negative pressure to drive the accel-
erated expansion of the universe. Recent observations from DESI collaboration [28,
29] and other literature [30–33] have pointed towards the evidence for the dynamical
nature of the dark energy over the cosmological constant.

The unknown nature of dark energy leads to the question of whether the dark sector
consists of a single or multiple components. Recent literature [27, 34–37] also shows
that the multi-component nature of the dark energy sector might be more preferable
by current observations than the cosmological constant. Current observations also
suggest that the equation of state of the scalar field might have a phantom barrier
(wφ = −1) crossing in the recent past [28, 30, 31]. In [36, 38] it has been argued
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that there exists a no-go theorem which prohibits a dark energy model with a single
degree of freedom to cross the phantom barrier. A multi-component model of dark
energy is needed for the successful phantom barrier crossing. In these types of multi-
component models, the dark sector is considered to consist of a cosmological constant
together with other dark energy components like a scalar field [34] or a fluid [35],
or to be composed of multi-scalar fields [27]. In [34] a multi-component dark energy
model has been proposed with a phantom scalar field and a cosmological constant,
in [35] cosmological constant is considered with a fluid as dark energy and in [27]
a generic form of the quintom model has been considered with quintessence and a
phantom field as the component of dark energy. In addition, all these works suggest
that multi-component models fit the data better than single component models and can
significantly reduce Hubble tension compared to the � CDM model.

One can study the phenomenology of these multi-component dark energy models
by comparing them against the state of the art cosmological observations. One can also
use the powerful techniques of dynamical system analysis to investigate the phase-
space behavior of these models without finding an exact solution. Dynamical system
analysis is particularly useful when we are interested in the asymptotic behaviour of
the system. Since these models have multiple components, it is crucial to understand
their late-time behavior to identify which component might dominate the universe as
the late-time attractor. In this paper, we use dynamical system analysis to investigate
a multi-component dark energy model where the dark sector comprises a minimally
coupled canonical scalar field, known as a quintessence field, and a cosmological con-
stant. Our primary goal is to examine this composite model’s phase space behaviour
and dynamics using the dynamical systems approach. By applying appropriate vari-
able transformations, we convert the system of equations into a set of autonomous
equations. Subsequently, these equations are recast in polar form to facilitate mathe-
matical handling. We have considered a parameterization of the scalar field potential
that can incorporate various forms of potential to keep our analysis as general as pos-
sible since there is no consensus on the choice for the form of the scalar field potential.
A detailed stability analysis of the system is presented. Additionally, we explore the
dynamics of this model by numerically solving it, revealing the possibility of early
time contribution of the scalar field.

The manuscript is structured as follows. In Section II, we cover the mathematical
setup of the model. Section III forms the autonomous system, which is then trans-
formed into polar form in Section IV. Section V provides a detailed stability analysis
of the system. In Section VI, we numerically investigated the evolution of the model
for different classes of potentials. Finally, in Section VII, we summarise and conclude
our findings.

2 Mathematical background

In a spatially flat universe described by the standard FLRW metric which includes
relativistic components, matter components, a minimally coupled canonical scalar
field known as the quintessence field, and the cosmological constant; the Friedmann
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equations can be expressed as follows:

H2 = κ2

3

(
ρm + ρr + ρφ + ρ�

)
, (1)

Ḣ = −κ2

2

∑

i

(pi + ρi ) . (2)

Here, κ2 = 8πG, with H = ȧ/a denoting the Hubble parameter and a(t) rep-
resenting the scale factor. The terms pφ = 1

2 φ̇
2 + V (φ) and ρφ = 1

2 φ̇
2 − V (φ)

correspond to the pressure and energy density of the scalar field. The subscripts m,
r , φ, and � refer to matter, radiation, quintessence, and the cosmological constant,
respectively. The pressure pi and the energy density ρi for each species i , namely m,
r , φ, and �, are interrelated through the relation pi = wiρi , where

wi =

⎧
⎪⎨

⎪⎩

1
3 , for relativistic matter

0, for non-relativistic matter

−1, for �.

TheKlein-Gordon equation for the scalar field and the continuity equations, respec-
tively, can be expressed as follows:

φ̈ + 3H φ̇ + dV (φ)

dφ
= 0, (3)

ρ̇i = −3H(pi + ρi ), ∀ i = m, r , φ,�. (4)

The density parameter for a given species ‘i’ is expressed as �i = k2ρi
3H2 . Conse-

quently, the Friedmann constraint can be written as,

�m + �r + �φ + �� = 1. (5)

3 The dynamical system

To understand the phase-space behavior of the system, one needs to introduce a new
set of dimensionless variables to write it as an autonomous system. Here we consider
the following set of dimensionless transformations:

x2 = κ2φ̇2

6H2 , y2 = κ2V (φ)

3H2 ,

λ = − 1

κV

dV (φ)

dφ
, 
 =

V d2V
dφ2

(
dV
dφ

)2 . (6)
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With the help of the above transformations, the system can be reduced to a set of
autonomous equations;

x ′ = −3x +
√
3

2
λy2 + 1

2
x

(
6x2 + 3�m + 4�r

)
, (7a)

y′ = −
√
3

2
λxy + 1

2
y
(
6x2 + 3�m + 4�r

)
, (7b)

�′
m = �m

(
−3 + 6x2 + 3�m + 4�r

)
, (7c)

�′
r = �r

(
−4 + 6x2 + 3�m + 4�r

)
, (7d)

λ′ = −√
6x(
 − 1)λ2 = −√

6x f . (7e)

Here, the derivatives are with respect to N = ln
(

a
a0

)
and f = (
 − 1)λ2, where

a0 is the present value of the scale factor. In such a scenario, the total Equation of State
(EoS) can be written as

ωtot ≡ ptot
ρtot

= −1 + 2x2 + �m + 4

3
�r . (8)

The system of equations given in Eq.(7) cannot be a closed system due to the
arbitrariness of the form of the scalar field potential V (φ). To close the system, one
needs to find f as a function of variables x, y, λ. Since by definition f contains
the derivative of the potential, the form of it will depend only on the choice of the
potential. Since there is a lack of consensus on the form of the potential of the scalar
field a wide variety of potentials has been used in the literature to study these mod-
els.

In one approach, a specific potential is selected, determining the corresponding
form of f . This method has already been utilized in the literature; for examples,
see [39–73]. Conversely, one can start with a specific form of f and derive the
corresponding potential using the definitions of y, λ, and 
 variables as given in
Eq.(6). To ensure our analysis applies to a wide class of potentials, we adopt the form
f = α0 + α1λ + α2λ

2, where α0, α1, and α2 are real-valued parameters. This partic-
ular parametrisation of f was first proposed in [74]. Different choices of the α0, α1
and α2 parameters will correspond to different classes of potentials. In Table-1, we
list eight distinct classes of potentials, each corresponding to different choices of the
α parameters. The classification was made based on whether certain α parameters
are zero or not. This approach has been taken to facilitate our analysis for a wide
class of potentials in a single setup. A similar approach, but for a different choice of
dynamical variables, has also been used in [75]. Within the potentials listed in Table-
1, V3 and V8 has been already studied in [76] and [77] respectively for early time
solutions. Whereas in [78] dynamical system analysis for V7 has been studied for the
quintessence field.
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Table 1 A list of various classes of potentials based on the different choices for the α parameters. Here A
and B are integration constants

Label Structure of f Potential V (φ)

V1 α0 �= 0, α1 �= 0, α2 �= 0 Aexp

⎡

⎢
⎣

α1kφ−2 log

(
cosh

(
1
2

√
α21−4α0α2k(φ+B)

))

2α2

⎤

⎥
⎦

V2 α0 = 0, α1 �= 0, α2 �= 0 A
(
eα1kφ

) 1
α2

(
α1α2k

(
eα1kφ + α2e

α1Ak
)) − 1

α2

V3 α0 �= 0, α1 = 0, α2 �= 0 A cos
− 1

α2
(√

α0α2k(φ + B)
)

V4 α0 �= 0, α1 �= 0, α2 = 0 Aexp

[
α0k

2φ−c1e
−kα1φ

α1k

]

V5 α0 �= 0, α1 = 0, α2 = 0 Aexp
[
1
2α0k

2φ2 + Bφ
]

V6 α0 = 0, α1 �= 0, α2 = 0 Aexp
[
− Be−kα1φ

α1k

]

V7 α0 = 0, α1 = 0, α2 �= 0 A (α2φ + B)
− 1

α2

V8 α0 = 0, α1 = 0, α2 = 0 AeBφ

4 Representation of the dynamical system in polar form

The use of polar coordinates to study the cosmological system is often useful, as
shown in [74, 75, 79] because the new variables are directly related to the cosmological
parameters and the mathematical handling of the system becomes easier. To transform
the system of equations Eq.(7) into polar form, we use the transformation x = r cos θ

and y = r sin θ , where r2 = x2 + y2 = �φ . With the above choice, the system of
equations reduces to

r ′ = r

2

(
−3 − 3 cos(2θ) + 6r2 cos2 θ + 3�m + 4�r

)
, (9a)

θ ′ = 1

2
sin θ

(
6 cos θ − √

6λr
)

, (9b)

�′
m = �m

(
−3 + 6r2 cos2 θ + 3�m + 4�r

)
, (9c)

�′
r = �r

(
−4 + 6r2 cos2 θ + 3�m + 4�r

)
, (9d)

λ′ = −√
6r cos θ

(
α0 + α1λ + α2λ

2
)

. (9e)

In addition, the Friedmann constraint given in Eq.(5) takes the following form

r2 + �m + �r + �� = 1. (10)
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The total equation of state and the equation of state of the scalar field can be
represented in the polar form as follows,

ωtot = −1 + 2r2cos2θ + �m + 4

3
�r , (11)

ωφ ≡ pφ

ρφ

= cos2θ. (12)

5 Stability analysis

The equilibrium points of the system of equations given in Eq.(9) are listed in Table-
2, while the eigenvalues corresponding to these points are presented in Table-3. The
equilibrium points are calculated by solving the simultaneous system of equations:
r

′ = 0, θ
′ = 0, �

′
m = 0, �

′
r = 0, and λ

′ = 0. The existence of equilibrium points for
the corresponding potentials is also given in the last column of Table-2. The values
for the cosmological parameters, such as the deceleration parameter, the equation of
state (EoS) of the scalar field, and the total EoS for each fixed point, are provided in
Table-4.

In this context, the subscript ‘c’ is used to denote the equilibrium points
(rc, θc, �mc, �rc, λc). Subsequently, we analyze the stability of these equilibrium
points by categorizing them according to the different epochs of the universe they
represent.

5.1 Radiation dominated era

The equilibrium points indicating the radiation domination era are characterised by
�rc = 1 and represented by ‘r ’ which are of the nonisolated type. For all the equi-
librium points of this era, the corresponding Jacobian matrix has two different sets
of eigenvalues depending on whether θc = nπ or θc = nπ ± π

2 . In both cases, the
Jacobian matrix has both positive and negative eigenvalues. So, these equilibrium
points are saddle-like in nature and exist for all potentials (V1 − V8) listed in Table-1.
From Table-4 it can be seen as expected that at these equilibrium points the universe
is decelerating, and wtot = 1/3.

5.2 Matter dominated era

The equilibrium points indicating the matter dominated era are defined by �mc =
1, and are denoted by ‘m’. The Jacobian matrix, corresponding to any equilibrium
point during this era, exhibits two distinct sets of eigenvalues depending on whether
θc = nπ or θc = nπ ± π

2 . For each n ∈ Z, the equilibrium points during this period
are categorized as saddle points due to the presence of both positive and negative

123



   38 Page 8 of 31 P. Sahoo et al.

Ta
bl
e
2

T
he

lis
t
of

eq
ui
lib

ri
um

po
in
ts
fo
r
th
e
sy
st
em

of
eq
ua
tio

ns
gi
ve
n
in

E
q.
(9
).
T
he

co
m
pl
et
e
ex
pr
es
si
on

s
of

A
±,

B
±,

C
±,

D
±
E

±
ar
e
gi
ve
n
in

A
pp

en
di
x-
1.

T
he

la
st

co
lu
m
n
of

th
e
ta
bl
e
sh
ow

s
th
e
cl
as
se
s
of

po
te
nt
ia
ls
fo
r
w
hi
ch

th
e
fix

ed
po
in
ts
ex
is
t

E
qu

ili
br
iu
m
po

in
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θ c

�
m
c

�
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λ
c

Po
te
nt
ia
ls

r
0

nπ 2
0

1
λ

V
1

−
V
8

m
0

nπ 2
1

0
λ

V
1

−
V
8

e1
1

nπ
0

0
0

V
2
,
V
6

−
V
8

e2
1

nπ
±

π 2
0

0
0

V
1

−
V
8

e3
1

nπ
0

0
A

±
V
1

−
V
3
,
V
7

e4
±

1
nπ

±
co
s−

1
(
A

± √ 6

)
0

0
A

±
V
1

−
V
3
,
V
7

c
0

nπ 2
0

0
λ

V
1

−
V
8
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2
E

±
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π
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(

√
2 3

)
0

B
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A
∓

V
1
,
V
3
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2 ±

−2
E

±
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+
1)

π
±
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s−

1
(

−√
2 3

)
0

B
±

A
∓

V
1
,
V
3

er
3 ±

2
E

±
2n

π
±

co
s−

1
(

√
2 3

)
0

1
−

4
E
2 ±

1 E
±

V
1
,
V
3

er
4 ±

−2
E

±
(2
n

+
1)

π
±

co
s−

1
(

−√
2 3

)
0

1
−

4
E
2 ±

1 E
±

V
1
,
V
3

er
5 ±

±
2α

2
α
1

(
nπ

±
co
s−

1
(

±√
2 3

)
)

0
1

−
4α

2 2
α
2 1

−
α
1

α
2

V
2

er
6 ±

±
2α

1
α
0

(
nπ

±
co
s−

1
(

±√
2 3

)
)

0
1

−
4α

2 1
α
2 0

−
α
0

α
1

V
4

em
1 ±

√ 3
E

±
2n

π
±

π 4
C

±
0

A
∓

V
1
,
V
3

em
2 ±

−√ 3
E

±
2n

π
±

3π 4
C

±
0

A
∓

V
1
,
V
3

em
3 ±

±√ 3
E

±
nπ

±
π 4

1
−

3
E
2 ±

0
1 E
±

V
1
,
V
3
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α
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α
0
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π
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3π 4
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α
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−

α
0

α
1

V
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1

r
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0
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V
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V
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Table 3 The list of eigenvalues of the equilibrium points given in Table-2. For the fixed points
er3±, er4±, em3± the analytical forms of the eigenvalues are complicated and hence not included in
the table. These eigenvalues can be computed for some particular choices of α parameters, see the text for
more details

Equilibrium points Eigenvalues

r 4, 3,−1, 1, 0 for θ = nπ ;

4,−3, 2, 1, 0 for θ = nπ ± π
2

m 3, 3, − 3
2 , −1, 0 for θ = nπ ;

−3, 3, 3
2 , −1, 0 for θ = nπ ± π

2

e1 6, 3, 3, 2, −√
6α1, for even n;

6, 3, 3, 2, +√
6α1, for odd n

e2 −4,−3, 0, 1
2

(−3 + √
9 − 12α0

)
, 1
2

(−3 − √
9 − 12α0

)

e3 2, 3, 6,∓√
6
√

α21 − 4α0α2, 3 −
√

3
2 A±, for even n;

2, 3, 6,±√
6
√

α21 − 4α0α2, 3 +
√

3
2 A±, for odd n

e4± 2, 3, 6,∓√
6
√

α21 − 4α0α2, 3 −
√

3
2 A±

c −4,−3,−3, 3, 0 for θ = nπ ;

−4,−3,−3, 0, 0 for θ = nπ ± π
2

er1±, er2± 1, 4,−8α2 − 4α1E±,

1
2

(
−1 ± 1

α0

√
−

(
15α20 + 64α0α2 + 64α1α2A±

))
,

er3±, er4± -

er5± 1, 4,−4α2,
1
2 ±

(
1

6α1

)√
3(3 − 8

√
6)α21 + 96

√
6α22

er6± 1, 4,
4α21
α0

, 1
2 ±

(
1

6α0

)√
3(3 − 8

√
6)α20 + 96

√
6α21

em1±, em2± −1, 3,−6α2 − 3α1E±,

3
4

(
−1 ± 1

α0

√
−

(
7α20 + 24α0α2 + 24α1α2A±

))
,

em3± -

em4, em5 −1, 3, −3α2,
3
4

(
−1 ±

(
3

4α1

)√
24α22 − 7α21

)

em6, em7 −1, 3,
3α21
α0

, 34

(
−1 ±

(
3

4α0

)√
24α21 − 7α20

)

ec1 −4,−3, 0, 1
2

(
−3 ±

√
9 − 12α0r
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eigenvalues corresponding to these fixed points. These equilibrium points for the
matter domination era are present for all potentials V1−V8 and represent a decelerating
universe with wtot = 0.

5.3 Scalar field dominated era

For the equilibrium points in the scalar field domination era, we have rc = 1. In this
case, the equilibrium points are given by, e1 - e4±, The eigenvalues of the Jacobian
matrix at ‘e1’ depend on α1. But, for the existence of positive eigenvalues of the
Jacobian matrix at ‘e1’, the equilibrium points given by ‘e1’ are unstable and exist
for the potentials V2 and V6 − V8. These equilibrium points represent a decelerating
universe with wtot = 1.

The equilibrium points indicated by ‘e2’ are nonhyperbolic, characterised by a zero
eigenvalue. These fixed points may be stable within the parameter range 0 < α0 ≤ 3

4 ,
as the remaining two eigenvalues can be negative. Due to their non-hyperbolic nature,
linear stability analysis cannot determine their stability. Instead, stability must be
assessed using center manifold theory or by numerically plotting the system’s phase
around the fixed point. Given that the system’s dimension exceeds three, a complete
phase plot is impractical; hence, phase portraits are drawn on various projected planes.
If all projected phase planes depict the equilibrium point as stable, it is stable in the
full space. Conversely, if any projected phase space shows instability, the equilibrium
point is unstable in the entire space. For the equilibrium point ‘e2’, we draw a phase
plot (Fig. 1) in the (r ,�m) plane. This phase plot indicates that the equilibrium points
specified by ‘e2’ are unstable on the (r ,�m) plane and consequently in the full space.
Those equilibrium points represent an accelerating universe with wφ = wtot = −1.

The equilibrium points, labelled as ‘e3’ and ‘e4±’, are identified for rc = 1,�mc =
0, �rc = 0, and λc = A± (refer to Appendix: 1 for the complete form of A±).
These fixed points exist for the potentials V1 − V3 and V7. However, the values of θc
are not the same for these points. These equilibrium points exist when α2 �= 0 and
α2
1 − 4α0α2 ≥ 0. The eigenvalues of ‘e3’ are determined by whether n is even or

odd, while the eigenvalues of ‘e4±’ are independent of n. In all cases, the Jacobian
matrix evaluated at ‘e3’ and ‘e4±’ exhibits positive eigenvalues. Consequently, the
fixed points represented by ‘e3’ and ‘e4±’ are unstable regardless of the values of n
and the parameters α0, α1, and α2. These fixed points represent a decelerating universe
with wφ = wtot = 1.

5.4 3 - dominated era

The equilibrium points representing the cosmological constant or �-domination era
are represented by rc = 0, �mc = 0, and �rc = 0 and exist for all classes of
potentials. In this case, the equilibrium points are given by ‘c’ in the Table-2 and they
are nonisolated equilibrium points. The eigenvalues of the Jacobian matrix evaluated
at ‘c’ depend on θc. For θc = nπ the Jacobian matrix has a mixture of positive and
negative eigenvalues, hence the fixed points in this case are saddle. On the other hand,
finding the stability of the equilibrium points ‘c’ for θc = nπ ± π

2 is more involved
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Fig. 1 Phase plot for the system of equations Eq.(9) in (r − �m ) plane for the fixed point, e2

since it has two zero eigenvalues and other all negative eigenvalues. Three negative
eigenvalues correspond to a 3D stable manifold, whereas the two zero eigenvalues
correspond to a 2D center manifold. In general, one can use the center manifold
theorem to investigate the stability of this fixed point, rather here we draw the phase
plots on 3D planes. All the points in red color and the points on the lines shown in red
in the projected phase spaces, as depicted in Fig. 2, represent the equilibrium point ‘c’
for the V2 potential. From this figure, we can see that the fixed points given by ‘c’ are
stable for θ = nπ ± π

2 in all projected subspaces and hence stable in the entire 5D
space. We have also checked that for the other class of potentials, the behaviour of the
fixed point remains the same. These fixed points represent an accelerating universe
with wφ = 1 and wtot = −1 for θ = nπ whereas wφ = wtot = −1 for θ = nπ ± π

2 .
Interestingly, in the first case, the scalar field behaves as a stiff fluid.

5.5 The era shared by scalar field and other components

In our setup, there are some specific fixed points that indicate scenarios where the
energy budget is shared between the scalar field and other components.

The era shared by the scalar field and radiation

The fixed points ‘er1±’ to ‘er6±’ represent the state where the universe’s energy
budget is shared by radiation and the scalar field by the relation r2c + �rc = 1. For
each n ∈ Z, the equilibrium points ‘er1±’, ‘er2±’, ‘er5±’, and ‘er6±’ exhibit posi-
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Fig. 2 Phase plots in different 3D projected spaces for the equilibrium point ‘c’ and for the potential V2. The
location of the fixed point ‘c’ is depicted by the blue point/line. The points/line in magenta color represents
the location of the other fixed points which are unstable in nature

tive eigenvalues, making these points unstable or saddle depending on the choice of
parameters α0, α1, α2. The eigenvalues of the Jacobian matrix at ‘er3±’ and ‘er4±’
are complicated in general, making it difficult to draw any conclusions about their
stability. For these points, we evaluate the stability at specific values of α parame-
ters. We have considered the same value of the α parameters that have been used to
plot Fig. 4 and Fig. 6, for potentials V1 and V3 respectively. For the potential V1 the
eigenvalues at ‘er3±’ are 1, 4,−2.8394, and −0.5 ± 1.93041i , while at ‘er4±’ they
are −201.793,−11.2262, 10.2262, 4, and 1, indicating that these points are saddle
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points. For potential V3, the eigenvalues at ‘er3±’ and ‘er4±’ are 1, 4,−4.48, and
−0.5 ± 1.92544i , showing that they are saddle points. The fixed points ‘er1±’ and
‘er2±’ exist for the potentials V1 and V3; ‘er5±’ exist for the potential V2; and ‘er6±’
for potential V4. For all possible equilibrium points in this era wφ = wtot = 1/3
representing a decelerated universe.

The era shared by the scalar field andmatter

For the equilibrium points in the era shared by scalar field and matter, we have
r2c + �mc = 1. In this case, the equilibrium points are given by ‘em1±’ - ‘em7’.
For each n ∈ Z, though the eigenvalues of the Jacobian matrix evaluated at the
equilibrium points ‘em1±’, ‘em2±’ and ‘em4’ - ‘em7’ depend on the parameters
α0, α1 and α2; but it has a positive eigenvalue irrespective of αi . So, the equilib-
rium points given in this era are unstable in nature. The equilibrium points ‘em1±’
- ‘em3±’ exist for the potentials V1, V3; ‘em4’ and ‘em5’ exist for the potential V2;
‘em6’ and ‘em7’ exist for the potential V4. The eigenvalues of the Jacobian matrix
evaluated at the equilibrium point ‘em3±’ are very complicated. So, for ‘em3±’, we
evaluate the stability similarly as the case for ‘er3±’ and ‘er4±’. For the potential
V1 the eigenvalues at ‘em3+’ are 3,−1,−2.12955, and −0.75 ± 1.97931i , while at
‘er3−’ they are 9.06334, 3,−1,−10.5633, and−151.345, indicating that these points
are saddle points. For potential V3, the eigenvalues at ‘em3±’ are 3,−1,−3.36, and
−0.75± 1.97522i , showing that they are saddle points. The exact value of the decel-
eration parameter depends on α parameters for all the potentials belonging to this
era. However, for all possible equilibrium points in this era wφ = wtot = 0 or 1/3
representing a decelerated universe.

The era shared by the scalar field and3

For the equilibrium points in the era shared by scalar field and�, we have r2c +��c =
�φc + ��c = 1. In this case, the equilibrium points are given by ‘ec1’ and ‘ec2±’.
The equilibrium points given by ‘ec1’ exist for all potentials V1 − V8. The nature of
the equilibrium points given by ‘ec1’ depends on the parameter α0. If 0 < α0 < 3

4r2c
,

then the equilibrium points given by ‘ec1’ are normally hyperbolic equilibrium points
and the Jacobian matrix has four eigenvalues with negative real parts and one zero
eigenvalue. Again, if α0 = 0 then the equilibrium points given by ‘ec1’ are of non-
hyperbolic type and the Jacobian matrix has three negative and two zero eigenvalues.
To check the stability of those equilibriumpointswe plot the evolution of the dynamical
variables r , θ,�m,�r and λ by solving the system numerically where the system has
been perturbed from the equilibrium point ‘ec1’. This approach for finding the stability
of the non-hyperbolic fixed points has been previously used in [78, 80, 81]. In Fig. 3
for example we have plotted the evolution of the system with N for the potentials V1
(on the left column) and V8 (on the right column) subjected to perturbations around
the fixed point ‘ec1’. We can see that the evolution of the dynamical variables does
not diverge but rather stays in the neighbourhood of the fixed point, indicating its
stable nature. We have also checked that the qualitative behaviour of the fixed point
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remains the same even for the other potentials. Thus, the fixed points given by ‘ec1’
are stable for α0 = 0. Again, if α0 < 0, then the equilibrium points given by ‘ec1’
are non-hyperbolic type and the Jacobian matrix has a positive eigenvalue. Thus, the
equilibrium points given by ‘ec1’ are stable for 0 ≤ α0 ≤ 3

4r2c
, where 0 ≤ rc ≤ 1

and unstable for α0 < 0. These fixed points represent an accelerating universe with
wφ = wtot = −1.

The equilibriumpoints ‘ec2±’ are defined by rc = ± 1√
2
E±D∓,�mc = 0,�rc = 0,

and λc = A∓ and exists for potentials V1 and V3. There are two distinct types of θc at
these points: θc = nπ and θc = 2nπ ± cos−1 D∓

2
√
3
. For θc = nπ , the eigenvalues of

the Jacobian matrix vary depending on whether n is even or odd, but some eigenvalues
are always positive, hence the fixed points are unstable. For θc = 2nπ ± cos−1 D∓

2
√
3
,

the form of the eigenvalues is complicated, and it is not possible to conclude stability
analytically for this fixed point for any general choice of the parameters α. Thus,
stability was assessed for specific values of the parameters α0, α1, and α2 that are
considered for the numerical solutions shown in Fig. 1 and Fig. 3. The Jacobian matrix
has at least one positive eigenvalue for our choices of the α parameters, making ‘ec2±’
unstable. These points also correspond to an accelerating universe.

6 Numerical investigation

In our analysis of the phase space for the current model, we observed that there is no
late-time attractor completely dominatedby the scalar field.Theonly possible late-time
attractors are either completely dominated by the cosmological constant or a scenario
where there is only the cosmological constant and scalar field present in the universe;
the rest of the components are absent. Although there might be some epochs where
the scalar field and other components coexist, represented by saddle or unstable fixed
points. For example, the fixed points in Table:2 where rc and some other components
like �mc or �rc are non-zero. In the following, we have numerically evolved the
system to investigate the evolution of the different cosmological parameters, and we
will see, as expected from the fixed point analysis, that there are possibilities of some
eras of the universe which are shared by the scalar field and other components of the
universe much before the standard era of dark energy domination.

We have numerically solved the system of equations Eq.(9) by considering the
specific initial conditions given in Table-5. In particular, except for the initial condition
of λ for all potentials, the initial conditions for the other variables remain almost the
same. The initial condition is set before the radiation-matter equality at N = −10.1,
corresponding to z ≈ 22026, deep in the radiation-dominated era. The range of α

parameters and λini for each class of potential is presented in Table-6, for which the
qualitative behaviour of our analysis remains the same.

The evolution of the density parameters for various components of the universe
corresponding to all the classes of potentials are shown in Fig. 4 to Fig. 11 respectively.
For the classes of potentials, V1 - V6 one can see the scalar field contribute to the energy
budget of the universe earlier than the expected dark energy domination epoch for a
short period resembling EDE-like behaviour of the scalar field appearing naturally
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Fig. 3 Plots of the numerical solutions for each dynamical variable by considering perturbations around
the equilibrium point ‘ec1’. The plots in the left column are shown for potential V1 and on the right it is
shown for the potential V8

in the deep-matter dominated era, which is almost 10% of the total energy budget of
the universe. But, at present the contribution of the scalar field is negligible for these
potentials. Whereas for the classes of potentials, V7 and V8 also the similar behaviour
of the scalar field appears naturally in the deep matter-dominated era, which is almost
10% of the total energy budget of the universe. Contrary to the previous case, for
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Fig. 4 Plot of the density parameters for different components of the universe for the potential V1

Fig. 5 Plot of the density parameters for different components of universe for the potential V2

Fig. 6 Plot of the density parameters for different components of universe for the potential V3

these two classes of potentials, at present as well as near future, the scalar field has
a non-negligible contribution to the total energy budget of the universe. The redshift
parameter values for matter-radiation equality and the occurrence of this behavior of
the scalar field are provided in Table-6 for all classes of potentials.
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Fig. 7 Plot of the density parameters for different components of universe for the potential V4

Fig. 8 Plot of the density parameters for different components of universe for the potential V5

Fig. 9 Plot of the density parameters for different components of universe for the potential V6
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Fig. 10 Plot of the density parameters for different components of universe for the potential V7

Fig. 11 Plot of the density parameters for different components of universe for the potential V8

Fig. 12 Plots of the deceleration parameter with respect to different classes of potentials
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Fig. 13 Plots of the equation of state for scalar field for different classes of potentials

Fig. 14 Plots of the total equation of state with respect to different classes of potentials

Fig. 15 Plot of the evaluation of the Hubble parameter H(N ) versus N for different classes of potentials.
The data from various observations are also included for comparison

We have also plotted the evolution of different cosmological parameters like the
deceleration parameter in Fig. 12, the equation of state of the scalar field in Fig. 13 and
the total equation of state in Fig. 14 for all potentials. Those plots are drawn for the
same values of the parameters α for which Fig. 4 to Fig. 11 are drawn. For the evolution
of the deceleration parameter, one can see that its value has become negative in the
recent past from positive, showing the accelerating expansion of the universe. It can
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be seen that the transition of the universe from the decelerated to the accelerated phase
remains smooth throughout except for the epochwhere the scalar field shows early time
contribution. During this epoch, the deceleration parameter shows some increments
suggesting more deceleration of the universe due to the activation of the scalar field.
Later, it started to decrease and become negative with time. From the plot of the EOS
of the scalar field in Fig. 13 one can see that in the very early universe, the scalar field
behaves like a stiff fluid with EOS wφ = 1 then it becomes wφ = −1. During the
early contribution period of the scalar field, it increases and becomes positive and the
scalar field does not contribute to the acceleration of the universe since wφ > −1/3
rather it was slowing down the expansion of the universe. This can also be seen from
the plot of the wtot in Fig. 14 since during this epoch the wtot becomes positive and
starts to decrease again.

In Fig. 15 we have shown the evolution of the H(z) vs z for all the classes of
potentials together with the observed data from different observations for comparison.
Please see Section:1 for more details about the data used in this plot. It can be seen
that even though the scalar field contributed during the matter-dominated era, these
potentials fit the data quite well, at least during the late time evolution.

A similar approach to study the early dark energy behavior of the scalar field using
dynamical system analysis was used in [76, 77]. Both works show that EDE-like
behavior of the scalar field before the recombination era can be achieved, but it is
subjected to a high degree of approximations. One of the advantages of our approach
is that one can find EDE-like behaviour of the scalar field more generically without
any approximation and the result applies to a wide class of potentials.

7 Conclusion

In this study, we explore the dynamics and phase-space characteristics of a multicom-
ponent dark energy model. This model features a dark sector that includes a minimally
coupled canonical scalar field and a cosmological constant. The equations are trans-
formed into autonomous systems and subsequently into polar form. Since we are
interested in making our analysis valid for a wide class of potentials, enabling us to
study the multi-component models from a more general point of view, we have con-
sidered a parameterization for the potentials of the scalar field that helps us study a
broad spectrum of potentials in a single setup.

By using dynamical system analysis, we find several fixed points that correspond
to various cosmological eras together with possible late-time attractors. In this model,
the late-time attractors are either completely dominated by the cosmological constant
or present a scenario where both the scalar field and the cosmological constant coexist,
excluding all other components.

Wealso investigated numerically the evolution of different cosmological parameters
and compared it with the observed data.Most interestingly, our findings show the early
time contribution of the scalar field occurring deep within the matter-dominated era,
not near the recombination period. We also found that during this era of the scalar
field, it behaves more like matter rather than dark energy, and the universe becomes
more decelerated compared to the standard case. The total EOS of the universe also
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Table 6 The range of parameters and λini for which the qualitative behavior of the numerical solution of
the system of equations Eq. (9) remains unchanged

Potentials λini α0 α1 α2 zeq z∗

V1 [−2.5,−2.4] [−20,−4.65] [18, 20] [0.4, 0.7] 3228 54

V2 [−3,−2.93] 0 [16, 20] [0.9, 1] 3228 52

V3 [−0.7,−0.5] [−270,−200] 0 [0.47, 0.8] 3228 58

V4 [−4.6,−4.49] [−8,−4.35] [2.8, 3] 0 3293 43

V5 [−5.3,−5.13] [−16.5,−12] 0 0 3228 44

V6 [−5.9,−5.785] 0 [0.9, 1.1] 0 3228 40

V7 [−6.1,−5.99] 0 0 [−0.15,−0.1] 3228 38

V8 [−6.9,−6.59] 0 0 0 3228 31

shows a transition from negative to positive values during this epoch.We acknowledge
that a comprehensive parameter estimation for the choice of α parameters using a
Boltzmann code like CLASS and current cosmological data is necessary to comment
more accurately on this early-time contribution of the scalar field and how it could
affect the overall evaluation and structure formation of the universe. Since this study
focuses on the investigation of the phase space behaviour of the model, it is beyond
the scope of the current work. It will be addressed in future research.

Appendix

A± =
−α1 ±

√
α2
1 − 4α0α2

2α2
.

E∓ =
−α1 ±

√
α2
1 − 4α0α2

2α0
,

B± = 1 + 4α2

α0
+ 4α1

α0
E±,

C± = 1 + 3α2

α0
+ 3α1

α0
E±,

D∓ =
√

− 2

α2
(α1A∓ + α0).

Observed data for the Hubble’s parameter vs. redshift & the e-folding
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